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Abstract In real-world applications, knowledge bases consisting of all the
available information for a specific domain, along with the current state of af-
fairs, will typically contain contradictory data, coming from different sources,
as well as data with varying degrees of uncertainty attached. An important as-
pect of the effort associated with maintaining such knowledge bases is deciding
what information is no longer useful; pieces of information may be outdated;
may come from sources that have recently been discovered to be of low quality;
or abundant evidence may be available that contradicts them. In this paper,
we propose a probabilistic structured argumentation framework that arises
from the extension of Presumptive Defeasible Logic Programming (PreDeLP)
with probabilistic models, and argue that this formalism is capable of address-
ing these basic issues. The formalism is capable of handling contradictory and
uncertain data, and we study non-prioritized belief revision over probabilistic
PreDeLP programs that can help with knowledge-base maintenance. For be-
lief revision, we propose a set of rationality postulates — based on well-known
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ones developed for classical knowledge bases — that characterize how these
belief revision operations should behave, and study classes of operators along
with theoretical relationships with the proposed postulates, including repre-
sentation theorems stating the equivalence between classes of operators and
their associated postulates. We then demonstrate how our framework can be
used to address the attribution problem in cyber security/cyber warfare.

Keywords Argumentation · Belief Revision · Probabilistic Reasoning ·
Cyber Security

1 Introduction

We begin by motivating our work, describing the most related work from
the literature, introducing the cyber-attribution problem, and clarifying the
contribution of the paper.

1.1 Motivation

In many real-world applications, knowledge bases consisting of all the infor-
mation that is available about a specific domain, along with all the available
information about the current state of affairs, will typically contain contra-
dictory data. That is because the knowledge base will have been constructed
using data from different sources that disagree. This data will also, typically,
contain some measure of uncertainty. Thus, key problems that need to be ad-
dressed by formalisms for knowledge representation are the ability to handle
contradictory information and to perform inference in the presence of uncer-
tainty. In addition, in many cases it is necessary to update the knowledge in
the knowledge base: for instance, pieces of information may be outdated, may
come from sources which have recently been discovered to be of low quality, or
there may be abundant evidence available that contradicts these pieces of in-
formation. In such cases, the knowledge base needs to be updated accordingly.
A good example of how all of these requirements come together is provided by
the scenario of determining the culprit of a cyber attack, an example that we
will use in some detail to illustrate the ideas we develop in this paper. Here
we provide a quick, motivating, sketch. The basic information in the scenario
comes from a variety of different sources that only have a partial view of the
domain, and since these sources disagree, having contradictory information in
the knowledge base is unavoidable. In a cyber attack, it is not uncommon for
the attacker to leave some false pieces of evidence with the goal of mislead-
ing the investigation, adding further contradictory information. None of the
evidence that is gathered after an attack is conclusive, so there is uncertainty
in the information that must be handled. Finally, since in responding to an
attack new information is added to information that was gathered after pre-
vious attacks, it is necessary to update the knowledge base. In particular, if
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new information contradicts old information, it may be necessary to perform
belief revision to recover consistency of some parts of the knowledge-base1.

From this discussion we distill the requirements on any knowledge represen-
tation formalism that will be used in real-world applications. Such a formalism
must be able to:

1. represent contradictory and uncertain information;
2. answer queries on a knowledge base; and
3. handle revisions to the knowledge base.

This paper presents a formalism called DeLP3E that meets all these require-
ments. A DeLP3E model consists of two parts, an environmental model (EM)
and an analytical model (AM), which represent different aspects of a scenario.
The idea is that the analytical model contains all the background information
that is available for the analysis of the scenario. We envisage that this informa-
tion is a combination of ontological information about the world, for example
(to take the old example), “Tweety is a penguin”, “penguins are birds” and
“penguins do not fly”, and commonsense information that is relevant, for ex-
ample “birds generally fly”. As can be seen from this small example, the AM
can be inconsistent, and so we will choose a formal model for the AM that
can cope with inconsistency. The environmental model is intended to contain
evidence that has been collected about a specific situation (an instance of the
more general model in the AM) about which queries will be answered. In the
classic example, “Tweety is a penguin” would be an element of the EM, but
the EM can also be more subtle than this, allowing for the representation of
uncertain information. If we did not know for sure that Tweety was a penguin,
but just had some suggestive evidence that this is so, we could, for example
include in the EM the fact that “Tweety is a penguin” has a probability of 0.8
of being true. The EM is not limited to facts — we could also choose to model
our evidence about Tweety with “Tweety is a bird” and “Tweety is black and
white” and the rule that “Black and white birds have a probability of 0.8 of
being penguins”. A more complex pair of EM and AM, which relates to our
motivating cyber security example, is given in Table 1.

The languages used in the AM and the EM are related through an annota-
tion function (AF), which pairs formulae in the EM and the AM. Reasoning
then consists of answering a query in the AM — when the AM is inconsistent,
this will involve establishing the relevant consistent subset to answer the query
computing the probability of the elements of the EM, and, through the anno-
tation function, establishing the probabilities that correspond to the answer
to the initial query. Thus, in the Tweety example, to answer a query about
whether Tweety can fly, the AM would reason about this truth or falsity of
the proposition “Tweety flies”, the AF would identify which elements of the
EM relate to this query, and the EM would provide a probability for these ele-
ments. The probability of the answer to the query, in this case either “Tweety

1 Below we discuss why we might want to carry out belief revision in a formalism that
has the ability to handle some forms of inconsistency.
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Environmental Model (EM) Analytical Model (AM)

Malware X was compiled on a system Malware X was compiled on a system in
using the English language. English-speaking country Y.
Country Y and country Z are Country Y has a motive to launch a
currently at war. cyber-attack against country Z
Malware W and malware X were created Malware W and malware X are related.
in a similar coding style.
Country Y has a significant Country Y has the capability to
investment in math-science-engineering conduct a cyber-attack.
(MSE) education.

Table 1 Examples of the kind of information that could be represented in the environmental
and analytical models in a cyber-security application domain.

flies” or “Tweety does not fly”, could then be computed. The inference of this
probability is what we call entailment.

In our vision, DeLP3E is less a specific formalism and more a family of
formalisms where different formal models for handling uncertainty can be used
for the EM, and different logical reasoning models can be used for the AM.
In this paper, to make the discussion concrete, we make some specific choices.
In particular, the EM is based on Nilsson’s Probabilistic Logic [32], and the
AM is based on the PreDeLP argumentation model from [30]. At the heart
of PreDeLP is the notion of presumptions, elements of the knowledge base
that can be presumed (assumed) to be true. This makes for a very natural
connection to the EM, where the presumptions are the elements of the AM
that connect (through the annotation function) to elements of the EM (as do
the other elements of the AM). Thus, the presumptions will have a probability
associated with them, and this is then used to establish the probability of the
answer to the initial query.

This discussion has covered the requirement for DeLP3E to deal with in-
consistency and uncertainty, and identified the need for inference. The final
requirement is for the ability to revise the knowledge base, in particular the
ability to perform belief revision in the sense of [1,16,17]. Given that belief
revision is concerned with maintaining the consistency of a set of beliefs and
that DeLP3E is built around an argumentation system that can handle incon-
sistency, at first glance it might not be obvious why belief revision will be
required if these become inconsistent. However, on more reflection, it is clear
that all three parts of a DeLP3E model — the environmental model, the ana-
lytical model, and the annotation function — may require revision, at least in
the instantiation of DeLP3E that we consider here. The EM is underpinned by
probability theory, and this places the constraint that the set of propositions
used in the EM be consistent (a constraint that would not necessarily exist if
we were to use a different uncertainty handling mechanism). The AM is built
using PreDeLP, and though there can be inconsistency in some elements of
a PreDeLP model, the strict rules and facts used to answer a specific query
must be consistent, and so belief revision is required (if we built the AM using
an argumentation system that only included defeasible knowledge, as in [36],
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belief revision would not be required). Finally, though there is never a strict
requirement for belief revision of the AF, as we will discuss later, providing
the ability to revise the annotation function can help us to avoid revising other
aspects of the model, and this can be helpful.

1.2 Related Work

The work that is closest to that reported here has been carried out in the
intersection of belief revision and argumentation, and the work carried out
in the combination of structured argumentation approaches with formalisms
for probabilistic reasoning. We now discuss these two points of contact with
the existing literature; since, to the best of our knowledge, the combination
we tackle in our work is completely novel, it is important to note that this
discussion is necessarily short.

Belief revision studies changes to knowledge bases as a response to epis-
temic inputs. Traditionally, such knowledge bases can be either belief sets (sets
of formulas closed under consequence) [1,16,17] or belief bases [20,21] (which
are not closed); since our end goal is to apply the results we obtain to real-
world domains, here we focus on belief bases. In particular, our knowledge
bases consist of logical formulas over which we apply argumentation-based
reasoning and to which we couple a probabilistic model. The connection be-
tween belief revision and argumentation was first studied in [6]; see [12] and
the further developments in [9]. Since then, the work that is most closely re-
lated to our approach is the development of the explanation-based operators
of [11]. The main difference between that line of work and the one developed
here arises from the interaction in our model between classical and probabilis-
tic formalisms; to the best of our knowledge, this has not been tackled in the
literature on combining argumentation and belief revision.

The study of argumentation systems together with probabilistic reasoning
has recently received a lot attention, though a significant part of this recent
work has concentrated on the combination of probability and abstract argu-
mentation [14,23,28,46]. There have, however, been several approaches that
combine structured argumentation with models for reasoning under uncer-
tainty; the first such approach to be proposed was [19]2 and several others
followed, such as the possibilistic approach of [4], and the probabilistic logic-
based approach of [24]. Similar to the difference between our approach and
others on argumentation and belief revision, the main difference between these
works and our own is that here we separate knowledge into the environmen-
tal model and the analytical model, where one part captures the probabilistic
knowledge, and the other part the models knowledge that is not inherently
probabilistic. This allows for a clear separation of interests between the two
kinds of models. This approach is based on the similar approach developed for
ontological languages in the Semantic Web (see [18], and references therein).

2 [26], which pre-dates [19], dealt with combining structured argumentation with abstract
uncertainty measures and did not explicitly handle probability.
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The basic differences with that work is that the non-probabilistic part of the
knowledge base corresponds to a classical ontology that is not inconsistency-
tolerant, and that belief revision has not (again, to the best of our knowledge)
been investigated in that formalism or others of its kind.

1.3 Application to the Cyber-Attribution Problem

Cyber-attribution — the problem of determining who was responsible for a
given cyber-operation, be it an incident of attack, reconnaissance, or informa-
tion theft [39] — is an important issue. The difficulty of this problem stems
not only from the amount of effort required to find forensic clues, but also the
ease with which an attacker can plant false clues to mislead security personnel.
Further, while techniques such as forensics and reverse-engineering [2], source
tracking [47], honeypots [44], and sinkholing [37] are commonly employed to
find evidence that can lead to attribution, it is unclear how this evidence is to
be combined and reasoned about. In some cases, such evidence is augmented
with normal intelligence collection, such as human intelligence (HUMINT),
signals intelligence (SIGINT) and other means — this adds additional com-
plications to the task of attributing a given operation.

In essence, cyber-attribution is a highly-technical intelligence analysis prob-
lem where an analyst must consider a variety of sources, each with its associ-
ated level of confidence, to provide a decision maker (e.g., a system adminis-
trator or Chief Information Officer) with insight into who conducted a given
operation. Indeed, while previous cyber-attribution approaches only consider a
single source of information, our approach takes into account multiple sources
of information due to its ability to deal with inconsistency. As it is well-known
that people’s ability to conduct intelligence analysis is limited [22], and due to
the highly technical nature of many cyber evidence-gathering techniques, an
automated reasoning system would be best suited for the task. Such a system
must be able to accomplish several goals:

– Reason about evidence in a formal, principled manner, i.e., relying on
strong computational and mathematical foundations.

– Consider evidence for cyber attribution associated with some level of un-
certainty (expressed via probabilities).

– Consider logical rules that allow for the system to draw conclusions based
on certain pieces of evidence and iteratively apply such rules.

– Consider pieces of information that may not be compatible with each other,
decide which information is most relevant, and express why.

– Attribute a given cyber-operation based on the above-described features
and provide the analyst with the ability to understand how the system
arrived at that conclusion.
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The fit between these requirements and the abilities of DeLP3E led us to
develop an extended example based around cyber-attribution3 as a way of
showcasing the functionality of DeLP3E. This example is given in Section 5.

1.4 Contribution of the paper

The main contribution of this paper is to present the DeLP3E framework, which
combines structured argumentation and probability, and to discuss in detail
how to perform belief revision in the context of this model. To our knowledge,
this is the first paper to address the combination of structured probabilistic
argumentation and belief revision. The paper brings together and extends the
results of two papers that discussed structured probabilistic argumentation
in respect to its application in cyber security — [40], which introduced the
DeLP3E formalism (referred to there as P-PreDeLP) and annotation-function
based belief revision, and [41], which studied a special case of the entailment
query and showed how the framework can be applied to a cyber-attribution
problem. Neither of these works include the more general entailment queries
covered here in Section 3.3, the discussion of determining consistency from
Section 4.1, or the AM-based belief revision introduced in Section 4.3. Further,
this work includes complete proofs for all major theoretical results, as well as
enhanced and expanded examples.

1.5 Structure of the paper

The structure of the paper broadly follows the three requirements identified
above. First, in Section 2 we introduce the environmental and analytical model
described above, where the environmental model makes use of Nilsson’s prob-
abilistic logic [32] and the analytical model builds upon PreDeLP [30]. The
resulting framework is a general-purpose probabilistic argumentation language
DeLP3E, which stands for Defeasible Logic Programming with Presumptions
and Probabilistic Environment. This is formally laid out in Section 3. That
section also studies the entailment problem for DeLP3E. Section 4 then pro-
vides the meat of the paper, discussing belief revision for the environmental
model, the analytical model and the annotation function focusing on the study
of non-prioritized belief revision operations. The paper suggests two sets of ra-
tionality postulates characterizing how such operations should behave, one for
the analytical model and one for the annotation function (as we show, revising
the environmental model is not sufficient to restore consistency). These postu-
lates are based on the well-known approach proposed in [20] for non-prioritized
belief revision in classical knowledge bases — and studies two classes of opera-
tors and their theoretical relationships with the proposed postulates, conclud-
ing with representation theorems for each class. Section 5 then walks through

3 The causality is a little more complicated than this sentence suggests. Indeed the cyber-
attribution problem was the original motivation for the development of DeLP3E, and ele-
ments of the example evolved along with the formalism.
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an extended example of the use of DeLP3E in the context of cyber-attribution.
Section 6 concludes.

2 Preliminaries

This section presents the main componenets of the DeLP3E framework, the
environmental model and the analytical model.

2.1 Basic Language

We assume sets of variables and constants, denoted with V and C, respectively.
In the rest of this paper, we will follow the convention from the logic program-
ming literature and use capital letters to represent variables (e.g., X,Y, Z) and
lowercase letters to represent constants.

The next component of the language is a set of predicate symbols. Each
predicate symbol has an arity bounded by a constant value; the EM and AM
use separate sets of predicate symbols, denoted with PEM,PAM, respectively
— the two models can, however, share variables and constants. As usual, a
term is composed of either a variable or a constant. Given terms t1, ..., tn
and n-ary predicate symbol p, p(t1, ..., tn) is called an atom; if t1, ..., tn are
constants, then the atom is said to be ground. The sets of all ground atoms
for the EM and AM are denoted with GEM and GAM, respectively.

Given a set of ground atoms, a world is any subset of atoms — those
that belong to the set are said to be true in the world, while those that do
not are false. Therefore, there are 2|GEM| possible worlds in the EM and 2|GAM|

worlds in the AM; these sets are denoted withWEM andWAM, respectively. In
order to avoid worlds that do not model possible situations given a particular
domain, we include integrity constraints of the form oneOf(A′), where A′ is a
subset of ground atoms. Intuitively, such a constraint states that any world
where more than one of the atoms from set A′ appears is invalid. We use
ICEM and ICAM to denote the sets of integrity constraints for the EM and
AM, respectively, and the sets of worlds that conform to these constraints is
denoted with WEM(ICEM) and WAM(ICAM), respectively.

Finally, logical formulas arise from the combination of atoms using the
traditional connectives (∧, ∨, and ¬). As usual, we say that a world w satisfies
formula f , written w |= f , iff: (i) If f is an atom, then w |= f iff f ∈ w; (ii) if
f = ¬f ′ then w |= f iff w 6|= f ′; (iii) if f = f ′ ∧ f ′′ then w |= f iff w |= f ′ and
w |= f ′′; and (iv) if f = f ′ ∨ f ′′ then w |= f iff w |= f ′ or w |= f ′′. We use the
notation formEM , formAM to denote the set of all possible (ground) formulas
in the EM and AM, respectively.

Example 1 Thus, the following are terms

a b c d e f p(X)
g h i j k p(a)
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and the following are formulae using those terms:

a d ∧ e k
b f ∧ g ∧ h
c i ∨ ¬j

�

2.2 Environmental Model

The EM is used to describe the probabilistic knowledge that we have about the
domain. In general, the EM contains knowledge such as evidence, uncertain
facts, or knowledge about agents and systems. Here we base the EM on the
probabilistic logic of [32], which we now briefly review.

Definition 1 Let f be a formula over PEM, V, and C, p ∈ [0, 1], and ε ∈
[0,min(p, 1− p)]. A probabilistic formula is of the form f : p± ε. A set KEM of
probabilistic formulas is called a probabilistic knowledge base.

In the above definition, the number ε is referred to as an error tolerance.
Intuitively, the probabilistic formula f : p ± ε is interpreted as “formula f is
true with probability between p− ε and p+ ε”. Note that there are no further
constraints over this interval apart from those imposed by other probabilistic
formulas in the knowledge base. The uncertainty regarding the probability
values stems from the fact that certain assumptions (such as probabilistic
independence between all formulae) may not hold in the environment being
modeled.

Example 2 Consider the following set KEM:

f1 = a : 0.8± 0.1 f4 = d ∧ e : 0.7± 0.2 f7 = k : 1± 0
f2 = b : 0.2± 0.1 f5 = f ∧ g ∧ h : 0.6± 0.1 f8 = a ∧ b : 0.4± 0.1
f3 = c : 0.8± 0.1 f6 = i ∨ ¬j : 0.9± 0.1

Throughout the paper, we also use K′EM = {f1, f2, f3} �

A set of probabilistic formulas describes a set of possible probability dis-
tributions Pr over the set WEM(ICEM). We say that probability distribution
Pr satisfies probabilistic formula f : p± ε iff:

p− ε ≤
∑

w∈WEM(ICEM),w|=f

Pr(w) ≤ p+ ε.

A probability distribution over WEM(ICEM) satisfies KEM iff it satisfies all
probabilistic formulas in KEM.

Given a probabilistic knowledge base and a (non-probabilistic) formula q,
the maximum entailment problem seeks to identify real numbers p, ε such that
all valid probability distributions Pr that satisfy KEM also satisfy q : p ± ε,
and there does not exist p′, ε′ s.t. [p − ε, p + ε] ⊃ [p′ − ε′, p′ + ε′], where all
probability distributions Pr that satisfy KEM also satisfy q : p′ ± ε′. In order
to solve this problem we must solve the linear program defined below.
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Definition 2 Given a knowledge base KEM and a formula q, we have a vari-
able xi for each wi ∈ WEM(ICEM). Each variable xi corresponds with the
probability of wi occurring.

– For each fj : pj ± εj ∈ KEM, there is a constraint of the form:

pj − εj ≤
∑
wi∈WEM(ICEM) s.t. wi|=fj xi ≤ pj + εj .

– We also have the constraint:
∑
wi∈WEM(ICEM) xi = 1.

– The objective is to minimize the function:
∑
wi∈WEM(ICEM) s.t. wi|=q xi.

We use the notation EP-LP-MIN(KEM, q) to refer to the value of the objective
function in the solution to the EM-LP-MIN constraints.

The next step is to solve the linear program a second time, but this time
maximizing the objective function (we shall refer to this as EM-LP-MAX) —
let ` and u be the results of these operations, respectively. In [32], it is shown
that:

ε =
u− `

2
and p = `+ ε

is the solution to the maximum entailment problem. We note that although the
above linear program has an exponential number of variables in the worst case
(i.e., no integrity constraints), the presence of constraints has the potential
to greatly reduce this space. Further, there are also good heuristics (cf. [25,
42]) that have been shown to provide highly accurate approximations with a
reduced-size linear program.

Example 3 Consider KB K′EM from Example 2 and a set of ground atoms
restricted to those that appear in that program; we have the following worlds:

w1 = {a, b, c} w2 = {a, b} w3 = {a, c} w4 = {b, c}
w5 = {b} w6 = {a} w7 = {c} w8 = ∅

and suppose we wish to compute the probability for formula q = a ∨ c.
For each formula in KEM we have a constraint, and for each world above

we have a variable. An objective function is created based on the worlds that
satisfy the query formula (in this case, worlds w1, w2, w3, w4, w6, w7). Solving
EP-LP-MAX(K′EM, q) and EP-LP-MIN(K′EM, q), we obtain the solution 0.9±0.1.
Hence, EP-LP-MAX(K′EM, q) can be written as follows:

max x1 + x2 + x3 + x4 + x6 + x7 w .r .t . :

0.7 ≤ x1 + x2 + x3 + x6 ≤ 0.9

0.1 ≤ x1 + x2 + x4 + x5 ≤ 0.3

0.8 ≤ x1 + x3 + x4 + x7 ≤ 1

x1 + x2 + x3 + x4 + x5 + x6 + x7 + x8 = 1

From this, we can solve EP-LP-MAX(K′EM, q) and, after an easy modification,
EP-LP-MIN(K′EM, q), and obtain the solution 0.9± 0.1. �
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2.3 Analytical Model

The analytical model contains information that a user may conclude based on
the information in the environmental model. While the EM contains informa-
tion that can have probabilities associated with it, statements in the AM can
be either true or false depending on a certain combination (or several possible
combinations) of statements from the EM.

For the AM, we choose to represent information using a structured ar-
gumentation framework [34] since this kind of formalism meets the represen-
tational requirements discussed in the introduction. Unlike the EM, which
describes probabilistic information about the state of the real world, the AM
must allow for competing ideas. Therefore, it must be able to represent contra-
dictory information. The algorithmic approach we shall later describe allows
for the creation of arguments based on the AM that may “compete” with each
other to answer a given query. In this competition — known as a dialectical
process — one argument may defeat another based on a comparison criterion
that determines the prevailing argument. Resulting from this process, certain
arguments are warranted (those that are not defeated by other arguments),
thereby providing a suitable explanation for the answer to a given query.

The transparency provided by the system can allow knowledge engineers
and users of the system to identify potentially incorrect input information
and fine-tune the models or, alternatively, collect more information. In short,
argumentation-based reasoning has been studied as a natural way to man-
age a set of inconsistent information — it is the way humans settle disputes.
As we will see, another desirable characteristic of (structured) argumentation
frameworks is that, once a conclusion is reached, we are left with an explana-
tion of how we arrived at it and information about why a given argument is
warranted; this is very important information for users to have.

The formal model that we use for the AM is Defeasible Logic Programming
with Presumptions (PreDeLP) [30], a formalism combining logic programming
with defeasible argumentation. Here, we briefly recall the basics of PreDeLP—
we refer the reader to [15,30] for the complete presentation. Formally, we use
the notation

ΠAM = (Θ,Ω,Φ,∆)

to denote a PreDeLP program, where Ω is a set of strict rules, Θ is a set of
facts, ∆ is a set of defeasible rules, and Φ is a set of presumptions. We now
define these constructs formally.

Facts (Θ) are ground literals representing atomic information or its negation,
using strong negation “¬”. Note that all of the literals in our framework must
be formed with a predicate from the set PAM. Note that information in the
form of facts cannot be contradicted. We will use the notation [Θ] to denote
the set of all possible facts.

Strict Rules (Ω) represent non-defeasible cause-and-effect information that
resembles an implication (though the semantics is different since the contra-
positive does not hold) and are of the form L0← L1, . . . , Ln, where L0 is a
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Θ : θ1a = p θ1b = q θ2 = r

Ω : ω1a = ¬s← t ω2a = s← p, u, r, v
ω1b = ¬t← s ω2b = t← q, w, x, v

Φ : φ1 = y –≺ φ2 = v –≺ φ3 = ¬z –≺

∆ : δ1a = s –≺ p δ2 = s –≺ u δ5a = ¬u –≺ ¬z
δ1b = t –≺ q δ3 = s –≺ r, v δ5b = ¬w –≺ ¬n

δ4 = u –≺ y

Fig. 1 A ground argumentation framework.

ground literal and {Li}i>0 is a set of ground literals. We will use the notation
[Ω] to denote the set of all possible strict rules.

Presumptions (Φ) are ground literals of the same form as facts, except that
they are not taken as being true but rather are defeasible, which means that
they can be contradicted. Presumptions are denoted in the same manner as
facts, except that the symbol –≺ is added. We note that the presumptions
cannot be treated as special cases of the defeasible rules. The intuition of the
presumption is that outside of other criteria, arguments with more presump-
tions should be defeated by arguments with less presumption which is not
necessarily the case if the presumption is expressed as a defeasible rule. As
shown in [30] the treatment of presumptions in this manner also necessitates
an extension to generalized specificity. See [30] for further details.

Defeasible Rules (∆) represent tentative knowledge that can be used if noth-
ing can be posed against it. Just as presumptions are the defeasible counterpart
of facts, defeasible rules are the defeasible counterpart of strict rules. They are
of the form L0 –≺ L1, . . . , Ln, where L0 is a ground literal and {Li}i>0 is a
set of ground literals. In both strict and defeasible rules, strong negation is al-
lowed in the head of rules, and hence may be used to represent contradictory
knowledge.

Even though the above constructs are ground, we allow for schematic versions
with variables that are used to represent sets of ground rules. In Figure 1, we
provide an example ΠAM of a ground knowledge base. (Figure 7 on Page 38
gives an example of a non-ground knowledge base.)

Arguments. Given a query in the form of a ground atom, the goal is to derive
arguments for and against its validity — derivation follows the mechanism of
logic programming [29]. Since rule heads can contain strong negation, it is
possible to defeasibly derive contradictory literals from a program. For the
treatment of contradictory knowledge, PreDeLP incorporates a defeasible ar-
gumentation formalism that allows the identification of the pieces of knowledge
that are in conflict and, through the previously mentioned dialectical process,
decides which information prevails as warranted. This dialectical process in-
volves the construction and evaluation of arguments, building a dialectical tree
in the process. Arguments are formally defined next.
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〈A1, s〉 A1 = {θ1a, δ1a} 〈A2, s〉 A2 = {φ1, φ2, δ4, ω2a, θ1a, θ2}
〈A3, s〉 A3 = {φ1, δ2, δ4} 〈A4, s〉 A4 = {φ2, δ3, θ2}
〈A5, u〉 A5 = {φ1, δ4} 〈A6,¬s〉 A6 = {δ1b, θ1b, ω1a}
〈A7,¬u〉 A7 = {φ3, δ5a}

Fig. 2 Example ground arguments from the framework of Figure 1.

Definition 3 An argument 〈A, L〉 for a literal L is a pair of the literal and a
(possibly empty) set of the AM (A ⊆ ΠAM) that provides a minimal proof for
L meeting the following requirements: (i) L is defeasibly derived from A; (ii)
Ω ∪Θ ∪ A is not contradictory; and (iii) A is a minimal subset of ∆ ∪ Φ.

Literal L is called the conclusion supported by the argument, and A is the
support of the argument. An argument 〈B, L〉 is a subargument of 〈A, L′〉 iff
B ⊆ A. An argument 〈A, L〉 is presumptive iff A ∩ Φ is not empty. We will
also use Ω(A) = A ∩ Ω, Θ(A) = A ∩ Θ, ∆(A) = A ∩∆, and Φ(A) = A ∩ Φ.
For convenience, we may sometimes call an argument by its support. (e.g.
argument A instead of argument 〈A, L〉.

Our definition differs slightly from that of [43], where DeLP is introduced, as
we include strict rules and facts as part of arguments — this is due to the
fact that in our framework, the components of an argument can only be used
in certain environmental conditions. Hence, a fact may be true in one EM
world and not another, and so different sets of strict rules and facts may be
applicable to different arguments. This is in contrast to DeLP when the same
set of strict rules and facts can be applied to any argument and so do not have
to be explicitly listed.. We discuss this further in Section 3 (page 16).

Definition 4 A literal is derived from an argument if it appears as a fact
or a presumption in the argument or appears in the head of a strict rule or a
defeasible rule where all the literals in the body of that strict rule or defeasible
rule are derived from that argument.

Example 4 Figure 2 shows example arguments based on the knowledge base
from Figure 1. Note that 〈A5, u〉 is a sub-argument of 〈A2, s〉 and 〈A3, s〉. �

Given an argument 〈A1, L1〉, counter-arguments are arguments that con-
tradict it. Argument 〈A2, L2〉 is said to counterargue or attack 〈A1, L1〉 at a
literal L′ iff there exists a subargument 〈A, L′′〉 of 〈A1, L1〉 such that the set
Ω(A1) ∪Ω(A2) ∪Θ(A1) ∪Θ(A2) is inconsistent.

Example 5 Consider the arguments from Example 4. The following are some
of the attack relationships between them: A1, A2, A3, and A4 all attack A6;
A5 attacks A7; and A7 attacks A2. �

A proper defeater of an argument 〈A,L〉 is a counter-argument that —
by some criterion — is considered to be better than 〈A,L〉; if the two are
incomparable according to this criterion, the counterargument is said to be a
blocking defeater. An important characteristic of PreDeLP is that the argument



www.manaraa.com

14 Paulo Shakarian et al.

comparison criterion is modular, and thus the most appropriate criterion for
the domain that is being represented can be selected; the default criterion used
in classical defeasible logic programming (from which PreDeLP is derived) is
generalized specificity [45], though an extension of this criterion is required for
arguments using presumptions [30]. We briefly recall this criterion next — the
first definition is for generalized specificity, which is subsequently used in the
definition of presumption-enabled specificity.

Definition 5 (Generalized Specificity) Let ΠAM = (Θ,Ω,Φ,∆) be a Pre-
DeLP program and let F be the set of all literals that have a defeasible deriva-
tion from ΠAM. An argument 〈A1, L1〉 is preferred to 〈A2, L2〉, denoted with
A1 �PS A2 iff the two following conditions hold:

(1) For all H ⊆ F , Ω ∪H is non-contradictory: if there is a derivation for L1

from Ω ∪ H ∪ DR(A1), and there is no derivation for L1 from Ω ∪ H, then
there is a derivation for L2 from Ω ∪H ∪DR(A2).
(2) There is at least one set H ′ ⊆ F , Ω ∪H ′ is non-contradictory, such that
there is a derivation for L2 from Ω ∪H ′ ∪DR(A2), there is no derivation for
L2 from Ω ∪H ′, and there is no derivation for L1 from Ω ∪H ∪DR(A1).

Intuitively, the principle of specificity says that, in the presence of two
conflicting lines of argument about a proposition, the one that uses more of
the available information is more convincing. Considering the Tweety example
again; there are arguments stating both that Tweety flies (because it is a bird)
and that Tweety doesn’t fly (because it is a penguin). The latter argument uses
more information about Tweety — it is more specific because it is information
that Tweety is not just a bird, but is a penguin-bird, the subset of birds that
are penguins — and is thus the stronger of the two.

Definition 6 (Presumption-enabled Specificity [30]) Given PreDeLP
program ΠAM = (Θ,Ω,Φ,∆), an argument 〈A1, L1〉 is preferred to 〈A2, L2〉,
denoted with A1 � A2 iff any of the following conditions hold:

(1) 〈A1, L1〉 and 〈A2, L2〉 are both factual, which is an argument using none
of the presumptions or defeasible rules and 〈A1, L1〉 �PS 〈A2, L2〉.
(2) 〈A1, L1〉 is a factual argument and 〈A2, L2〉 is a presumptive argument,
which is an argument using at least one of the presumptions or defeasible rules.

(3) 〈A1, L1〉 and 〈A2, L2〉 are presumptive arguments, and

(a) Φ(A1) ⊂ Φ(A2) or,

(b) Φ(A1) = Φ(A2) and 〈A1, L1〉 �PS 〈A2, L2〉.

Generally, if A and B are arguments with rules X and Y , respectively and X ⊂
Y , then A is stronger than B. This also holds when A and B use presumptions
P1 and P2, resp., and P1 ⊂ P2.

Example 6 The following are some relationships between arguments from Ex-
ample 4, based on Definitions 5 and 6.
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A1 and A6 are incomparable (blocking defeaters);
A6 � A2, and thus A6 defeats A2;
A5 and A7 are incomparable (blocking defeaters). �

A sequence of arguments called an argumentation line thus arises from
this attack relation, where each argument defeats its predecessor. To avoid
undesirable sequences, which may represent circular argumentation lines, in
DeLP an argumentation line is acceptable if it satisfies certain constraints
(see below). A literal L is warranted if there exists a non-defeated argument
A supporting L.

Definition 7 ([15]) Let ΠAM = (Θ,Ω,Φ,∆) be a PreDeLP program. Two
arguments 〈A1, L1〉 and 〈A2, L2〉 are concordant iff the set Θ∪Ω ∪A1 ∪A2 is
non-contradictory.

Definition 8 ([15]) Let Λ be an argumentation line. Λ is an acceptable ar-
gumentation line iff:

(1) Λ is a finite sequence.

(2) The set ΛS , of supporting arguments is concordant, and the set ΛI of
interfering arguments is concordant.

(3) No argument 〈Ak, Lk〉 in Λ is a subargument of an argument 〈Ai, Li〉
appearing earlier in Λ (i < k)

(4) For all i, such that the argument 〈Ai,Ki〉 is a blocking defeater for 〈Ai−1,Ki−1〉,
if 〈Ai+1,Ki+1〉 exists, then 〈Ai+1,Ki+1〉 is a proper defeater for 〈Ai,Ki〉.

Clearly, there can be more than one defeater for a particular argument
〈A, L〉. Therefore, many acceptable argumentation lines could arise from 〈A, L〉,
leading to a tree structure. The tree is built from the set of all argumentation
lines rooted in the initial argument. In a dialectical tree, every node (except
the root) represents a defeater of its parent, and leaves correspond to unde-
feated arguments. Each path from the root to a leaf corresponds to a different
acceptable argumentation line. A dialectical tree provides a structure for con-
sidering all the possible acceptable argumentation lines that can be generated
for deciding whether an argument is defeated. This tree is called dialectical
because it represents an exhaustive dialectical4 analysis for the argument in
its root. For a given argument 〈A, L〉, we denote the corresponding dialectical
tree as T (〈A, L〉).

Given a literal L and an argument 〈A, L〉, in order to decide whether or
not a literal L is warranted, every node in the dialectical tree T (〈A, L〉) is
recursively marked as “D” (defeated) or “U” (undefeated), obtaining a marked
dialectical tree T ∗(〈A, L〉) as follows:

1. All leaves in T ∗(〈A, L〉) are marked as “U”s, and
2. Let 〈B, q〉 be an inner node of T ∗(〈A, L〉). Then 〈B, q〉 will be marked as

“U” iff every child of 〈B, q〉 is marked as “D”. The node 〈B, q〉 will be
marked as “D” iff it has at least a child marked as “U”.

4 In the sense of providing reasons for and against a position.
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Given an argument 〈A, L〉 obtained from ΠAM, if the root of T ∗(〈A, L〉)
is marked as “U”, then we will say that T ∗(〈A, h〉) warrants L and that L
is warranted from ΠAM. (Warranted arguments correspond to those in the
grounded extension of a Dung argumentation system [7].) There is a further
requirement when the arguments in the dialectical tree contain presumptions
— the conjunction of all presumptions used in even levels of the tree must be
consistent. This can give rise to multiple trees for a given literal, as there can
potentially be different arguments that make contradictory assumptions.

We can then extend the idea of a dialectical tree to a dialectical forest. For
a given literal L, a dialectical forest F(L) consists of the set of dialectical trees
for all arguments for L. We shall denote a marked dialectical forest, the set of
all marked dialectical trees for arguments for L, as F∗(L). Hence, for a literal
L, we say it is warranted if there is at least one argument for that literal in
the dialectical forest F∗(L) that is labeled as “U”, not warranted if there is at
least one argument for the literal ¬L in the dialectical forest F∗(¬L) that is
labeled as “U”, and undecided otherwise.

With this, we have a complete description of the analytical model, and can
go on to describe the DeLP3E framework.

3 The DeLP3E Framework

DeLP3E arises from the combination of the environmental model ΠEM, and
the analytical model ΠAM; the two models are held together by the annotation
function. This allows elements from the AM to be annotated with elements
from the EM. These annotations specify the conditions under which the various
statements in the AM can potentially be true.

3.1 Definition

Intuitively, given ΠAM, every element of Ω ∪ Θ ∪ ∆ ∪ Φ might only hold in
certain worlds in the set WEM — that is, they are subject to probabilistic
events. Therefore, we associate elements of Ω∪Θ∪∆ ∪ Φ with a formula from
formEM . In doing so, we can in turn compute the probabilities of subsets of
Ω∪Θ∪∆ ∪ Φ using the information contained in ΠEM, as we describe shortly.
The notion of an annotation function associates elements of Ω ∪ Θ ∪ ∆ ∪ Φ
with elements of formEM .

Definition 9 An annotation function is any function af : Ω ∪ Θ ∪∆ ∪ Φ →
formEM . We use [af ] to denote the set of all annotation functions.

Figure 3 shows an example of an annotation function.
We will sometimes denote annotation functions as sets of pairs (f, af(f))

in order to simplify the presentation. Function af may come from an expert’s
knowledge or the data itself. Choosing the correct function and learning the
function from data is the topic of ongoing work.
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af(θ1a) = af(θ1b) = k ∨
(
f ∧

(
h ∨ (e ∧ l)

))
af(φ3) = b

af(θ2) = i af(δ1a) = af(δ1b) = True
af(ω1a) = af(ω1b) = True af(δ2) = True
af(ω2a) = af(ω2b) = True af(δ3) = True
af(φ1) = c ∨ a af(δ4) = True
af(φ2) = f ∧m af(δ5a) = af(δ5b) = True

Fig. 3 Example annotation function.

We also note that, by using the annotation function, we may have certain
statements that appear as both facts and presumptions (likewise for strict and
defeasible rules). However, these constructs would have different annotations,
and thus be applicable in different worlds. We note that the annotation func-
tion can allow AM facts and strict rules to be true in some EM worlds and
false in others – this is why we include facts and strict rules as part of an
argument in our framework.

Example 7 Suppose we added the following presumptions to our running ex-
ample:

φ3 = l –≺

φ4 = m –≺

and suppose we extend af as follows:

af (φ3) = a ∧ b
af (φ4) = a ∧ b ∧ c

So, for instance, unlike θ1, φ3 can potentially be true in any world of the form:

{a, b}

�

We now have all the components to formally define a DeLP3E program.

Definition 10 Given environmental model ΠEM, analytical model ΠAM, and
annotation function af , a DeLP3E program is of the form I = (ΠEM, ΠAM, af ).
We use notation [I] to denote the set of all possible programs.

The next step in the definition of DeLP3E is to explore entailment opera-
tions. In an entailment query, we are given an AM literal L, probability interval
p± ε, and DeLP3E program I, and we wish to determine if L is entailed by I
with a probability p±ε. However, before we can formally define this entailment
problem, we define a warranting scenario to determine the proper environment
in question and the entailment bounds (Section 3.2). This is followed by our
formal definition and method for computing entailment in Section 3.3.
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3.2 Warranting Scenario

In DeLP3E, we can consider a world-based approach; that is, the defeat rela-
tionship among arguments depends on the current state of the (EM) world.

Definition 11 Let I = (ΠEM, ΠAM, af ) be a DeLP3E program, argument
〈A, L〉 is valid w.r.t. world w ∈ WEM iff ∀c ∈ A, w |= af(c).

We extend the notion of validity to argumentation lines, dialectical trees, and
dialectical forests in the expected way (for instance, an argumentation line is
valid w.r.t. w iff all arguments that comprise that line are valid w.r.t. w).

Example 8 Consider worlds w1, . . . , w8 from Example 3 along with the argu-
ment 〈A5, u〉 from Example 4. This argument is valid in worlds w1, w2, w3,
w4, w6, and w7.

We also extend the idea of a dialectical tree w.r.t. worlds; so, for a given
world w ∈ WEM, the dialectical (resp., marked dialectical) tree induced by
w is denoted with Tw〈A, L〉 (resp., T ∗w 〈A, L〉). We require that all arguments
and defeaters in these trees be valid with respect to w. Likewise, we extend
the notion of dialectical forests in the same manner (denoted with Fw(L) and
F∗w(L), resp.). Based on these concepts, we introduce the notion of warranting
scenario.

Definition 12 Let I = (ΠEM, ΠAM, af ) be a DeLP3E program and L be a
literal formed with a ground atom from GAM; a world w ∈ WEM is said to be
a warranting scenario for L (denoted w `war L) iff there is a dialectical forest
F∗w(L) in which L is warranted and F∗w(L) is valid w.r.t. w.

We note that for a world w not being a warranting scenario for L, is not
the same as being a warranting scenario for ¬L. For that we need a dialecti-
cal tree F∗w(L′) in which L′ is warranted and F∗w(L′) is valid w.r.t w where
L′ = ¬L

Example 9 Considering the arguments from Example 8, worlds w3, w6, and
w7 are warranting scenarios for argument 〈A5, u〉. �

3.3 Entailment in DeLP3E

In this section, we use the idea of a warranting scenario to formally define our
entailment problem. We first notice that the set of worlds in the EM where a
literal L in the AM must be true is exactly the set of warranting scenarios —
these are the “necessary” worlds:

nec(L) = {w ∈ WEM | (w `war L)}.

Now, the set of worlds in the EM where AM literal L can be true is the
following — these are the “possible” worlds:

poss(L) = {w ∈ WEM | w 6`war ¬L}.
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Example 10 Following from Example 8, we have that:

nec(u) = {w3, w6, w7} and poss(u) = {w1, w2, w3, w4, w6, w7}.

�

Definition 13 We define for(w) =
∧
a∈w a ∧

∧
a/∈w ¬a, which denotes the

formula that has w as its only model. Also, we extend this notation to sets of
words: for(W ) =

∨
w∈W for(w).

Definition 14 (Entailment) Given DeLP3E program, I = (ΠEM, ΠAM, af ),
AM literal L and probability interval p ± ε, we say that I entails L with
probability p ± ε iff all probability distributions Pr that satisfy ΠEM satisfy
for(nec(L)) : p± ε and for(poss(L)) : p± ε.

We will also refer to the tightest bound [p − ε, p + ε] such that I entails
L with a probability p± ε as the “tightest entailment bounds.” The intuition
behind the above definition of entailment is as follows. Let ` be the maximum
value for p−ε and u be the minimum value for p+ε before we can no longer say
that I entails L with probability p± ε. In this case, we can define probability
distributions Pr−poss,Pr

+
poss,Pr

−
nec,Pr

+
nec as follows:

– Pr−poss satisfies ΠEM and assigns the smallest possible probability to worlds
in for(poss(L)).

– Pr+poss satisfies ΠEM and assigns the largest possible probability to worlds
in for(poss(L)).

– Pr−nec satisfies ΠEM and assigns the smallest possible probability to worlds
in for(nec(L)).

– Pr+nec satisfies ΠEM and assigns the largest possible probability to worlds
for(nec(L)).

We only need to compare Pr−poss(poss(L)) and Pr−nec(nec(L)) for finding the

lower bound since Pr+poss(poss(L)) ≥ Pr−poss(poss(L)) and Pr+nec(nec(L)) ≥
Pr−nec(nec(L)). Similar reasoning holds for the case of finding the upper bound.
Thus, we get the following relationships:

` = min
(
Pr−poss(poss(L)),Pr−nec(nec(L))

)
(1)

u = max
(
Pr+poss(poss(L)),Pr+nec(nec(L))

)
(2)

However, we note that as nec(L) ⊆ poss(L) we have the following:

` = Pr−nec(nec(L)) (3)

u = Pr+poss(poss(L)) (4)

We note that (2) and (4) is equivalent to the belief and plausibility values
of L defined in the Dempster-Shafer theory [38].

Hence, the tightest possible entailment bounds that can be assigned to a
literal can be no less than the lower bound of the probability assigned to the
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necessary warranting scenarios and no more than the probability assigned to
the possible warranting scenarios. Hence, we can compute the tightest proba-
bility bound such that L is entailed (denoted PL,Pr ,I) as follows:

`L,Pr ,I =
∑

w∈nec(L)

Pr−nec(w), uL,Pr ,I =
∑

w∈poss(L)

Pr+poss(w)

`L,Pr ,I ≤ PL,Pr ,I ≤ uL,Pr ,I

Thus, in interval form we have:

PL,Pr ,I =

(
`L,Pr ,I +

uL,Pr ,I − `L,Pr ,I
2

)
± uL,Pr ,I − `L,Pr ,I

2
.

Now let us consider the computation of tightest probability bounds for en-
tailment on a literal when we are given a knowledge base KEM in the environ-
mental model, which is specified in I, instead of a probability distribution over
all worlds. For a given world w ∈ WEM, let for(w) =

(∧
a∈w a

)
∧
(∧

a/∈w ¬a
)

— that is, a formula that is satisfied only by world w. Now we can determine
the upper and lower bounds on the probability of a literal w.r.t. KEM (denoted
PL,I) as follows:

`L,I = EP-LP-MIN

KEM,
∨

w∈nec(L)

for(w)



uL,I = EP-LP-MAX

KEM,
∨

w∈poss(L)

for(w)


`L,I ≤ PL,I ≤ uL,I

Hence, PL,I =
(
`L,KEM +

uL,I−`L,I
2

)
± uL,I−`L,I

2 .

Example 11 Consider argument 〈A5, u〉 from Example 8. We can compute
Pu,I (where I = (Π ′EM , ΠAM , af )).

Note that for the upper bound, the linear program we need to set up is the
one shown in Example 3. For the lower bound, the objective function changes
to: minx3 + x6 + x7. From these linear constraints, we obtain:

Pu = 0.7± 0.2

�

In the following, we study the problem of consistency in our framework,
which is the basis of the belief revision operators studied later on.
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4 Belief Revision in DeLP3E Programs

Even though our framework relies heavily on argumentation and reasoning
under uncertainty, inconsistency in our knowledge base can still arise. For
instance, the knowledge encoded in the environmental model could become
contradictory, which would preclude any probability distribution from satisfy-
ing that part of the knowledge base. Even on the argumentation side, despite
that fact that argumentation formalisms in general are inconsistency tolerant,
there may be problems with inconsistency. For example, it would be problem-
atic for DeLP3E if the set of strict facts and strict rules were contradictory,
and the set of contradictory elements all arise under the same environmental
conditions.

4.1 Consistency of DeLP3E Programs

In this section, we first explore what forms of inconsistency can arise in DeLP3E
programs before going on to examine in detail how ideas from belief revision
can be applied to deal with this inconsistency. We use the following notion
of (classical) consistency of PreDeLP programs: Π is said to be consistent if
there does not exist a ground literal a s.t. Π ` a and Π ` ¬a. For DeLP3E
programs, there are two main kinds of inconsistency that can be present; the
first is what we refer to as EM, or Type I, (in)consistency.

Definition 15 An environmental model ΠEM is Type I consistent iff there
exists a probability distribution Pr over the set of worlds WEM that satis-
fies ΠEM.

We illustrate this type of consistency in the following example.

Example 12 It is possible to create probabilistic knowledge bases for which
there is no satisfying probability distribution. The following formula is a simple
example of such a case:

rain ∨ hail : 0.3± 0;

rain ∧ hail : 0.5± 0.1.

The above is an example of Type I inconsistency in DeLP3E, as it arises from
the fact that there is no satisfying interpretation for the EM knowledge base.
�

However, even if the EM is consistent, the interaction between the annota-
tion function and facts and strict rules can still cause another type of inconsis-
tency to arise. We will refer to this as combined, or Type II, (in)consistency.

Definition 16 A DeLP3E program I = (ΠEM, ΠAM, af ), with ΠAM =
〈Θ,Ω,Φ,∆〉, is Type II consistent iff: given any probability distribution Pr that
satisfies ΠEM, if there exists a world w ∈ WEM such that

⋃
x∈Θ∪Ω |w|=af(x){x}

is inconsistent, then we have Pr(w) = 0.
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Algorithm CON-CHK-BFS(ΠEM, ΠAM, af , d,S = {S1, . . . , Sn})
1. S′ := ∅
2. For each Si ∈ S where Si is not classically consistent, do the following:

a. If Pr is such that Pr |= ΠEM and Pr(
∧

s∈Si
af (s)) > 0 then

return INCONSISTENT and terminate;
b. Else, S′ := S′ ∪ {S′ ⊆ Si | |S′| = |Si| − 1};

3. If d = 1 return CONSISTENT;
4. Else, return CON-CHK-BFS(ΠEM, ΠAM, af , d− 1,S′).

Fig. 4 A straightforward BFS-based algorithm for consistency checking.

Thus, any EM world in which the set of associated facts and strict rules are
inconsistent (we refer to this as “classical consistency”) must always be as-
signed a zero probability. The intuition is as follows: any subset of facts and
strict rules are thought to be true under certain circumstances — these circum-
stances are determined through the annotation function and can be expressed
as sets of EM worlds. Suppose there is a world where two contradictory facts
can both be considered to be true (based on the annotation function). If this
occurs, then there must not exist a probability distribution that satisfies the
program ΠEM that assigns such a world a non-zero probability, as this world
leads to an inconsistency. We provide a more concrete example of Type II
inconsistency next.

Example 13 Consider the environmental model from Example 2 (Page 9), the
analytical model shown in Figure 1 (Page 12), and the annotation function
shown in Figure 3 (Page 17). Suppose the following fact is added to the argu-
mentation model:

θ3 = ¬p,
and that the annotation function is expanded as follows:

af (θ3) = k ∧ ¬f

Clearly, fact θ3 is in direct conflict with fact θ1a. However, this does not nec-
essarily mean that there is an inconsistency. For instance, by the annotation
function, θ1a holds in the world {k, f} while θ3 does not. However, let’s con-
sider following world w = {k}. Note that w |= af (θ3) and w |= af (θ2). Hence,
in this world both contradictory facts can occur. However, can this world be
assigned a non-zero probability? A simple examination of the environmental
model indicates that it can. Hence, in this case, we have Type II inconsistency.
�

We say that a DeLP3E program is consistent iff it is both Type I and Type
II consistent. However, in this paper, we focus on Type II consistency and
assume that the program is Type I consistent. Figure 4 gives a straightforward
approach to identifying Type II inconsistent DeLP3E programs by running
breath-first search on a set of Θ ∪ Ω. The algorithm works by examining all
subsets of a set of facts and strict rules to find inconsistent subsets whose
corresponding formula in the environmental model can be assigned a non-zero
probability. The following result states its correctness.
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Proposition 1 For Type I consistent DeLP3E program I = (ΠEM, ΠAM, af )
where Θ and Ω are the sets of facts and strict rules in ΠAM, then
CON-CHK-BFS(ΠEM, ΠAM, af , d, {Θ ∪ Ω}) (where d = |Θ ∪ Ω|) returns IN-
CONSISTENT iff the DeLP3E is Type II inconsistent.

Proof The algorithm takes the set of facts and strict rules and checks the con-
sistency of it by checking the value of the probability distribution on the set
and the subsets of the given set. If in any step there exists a subset of facts
and strict rules that is not Type I consistent, the algorithm checks the value of
the probability distribution; if it is not zero, it will return INCONSISTENT.
BWOC, suppose the algorithm has returned INCONSISTENT for a DeLP3E
program that is consistent. So, there exist a subset S of size d of facts and
strict rules for which the algorithm has returned INCONSISTENT, while S is
consistent. Because the algorithm has returned INCONSISTENT, the set S is
classically inconsistent. It also means that @ w ∈WAM s.t. w |=

∧
s∈S{s} and

∃ Pr s.t. Pr(af(s)) > 0. This is in contradiction with the assumption of consis-
tency of S. For the other direction, consider a DeLP3E program that is inconsis-
tent. Since the program is inconsistent, there exists a world w ∈ WEM such that⋃
x∈Θ∪Ω |w|=af(x){x} is inconsistent and Pr(w) > 0. Since

⋃
x∈Θ∪Ω |w|=af(x){x}

is a subset of the facts and rules, the algorithm checks its consistency in some
iteration. Since the subset is inconsistent and the probability value assigned
to it is greater than zero, the algorithm returns INCONSISTENT. �

However, we note that even with an oracle for checking the classical con-
sistency of a subset (line 2) and for determining the upper bound on the
probability of the annotations (line 2a), this algorithm is still intractable as it
explores all subsets of Θ ∪ Ω. One possible way to attack this intractability
is to restrict the depth of the search by setting d to be less than the size of
Θ ∪Ω. In this case, we get the following result:

Proposition 2 Given Type I consistent DeLP3E program I = (ΠEM, ΠAM, af ),
where Θ and Ω are the sets of facts and strict rules in ΠAM and d < |Θ ∪Ω|,
then if CON-CHK-BFS(ΠEM, ΠAM, af , d, {Θ ∪Ω}) returns INCONSISTENT,
the program I is Type II inconsistent.

Proof Suppose, BWOC that CON-CHK-BFS(ΠEM, ΠAM, af , d, {Θ ∪ Ω}) re-
turns INCONSISTENT, and the program I is Type II consistent. We claim
that by showing that, under the condition of the statement, that if I is Type II
consistent, then CON-CHK-BFS(ΠEM, ΠAM, af , d, {Θ∪Ω}) must return CON-
SISTENT (giving a contradiction). This is due to the following: since calling
CON-CHK-BFS(ΠEM, ΠAM, af , d, {Θ∪Ω} where d = |Θ∪Ω| returns CONSIS-
TENT when the program is consistent, then the algorithm returns CONSIS-
TENT for every subset of Θ ∪ Ω smaller than itself. As a result, CON-CHK-
BFS(ΠEM, ΠAM, af , d, {Θ ∪Ω}) (where d < |Θ ∪Ω|) returns CONSISTENT.
�

Therefore, by restricting depth, we can view this algorithm as an “anytime”
approach, essentially searching for a world leading to an inconsistent program
and not halting until it does.
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In the following sections, we explore three methods for resolving Type II
inconsistency through belief revision. We summarize them briefly below.

Revise the EM. The probabilistic model can be changed in order to force the
worlds that induce contradicting strict knowledge to have probability zero.
In general, this type of revision by itself is not ideal as it will not work in
all cases. We discuss this method in Section 4.2.

Revise the AM. The argumentation model can be changed in such a way that
the set of strict rules and facts is consistent. If this is the case, then Type
II consistency follows. We discuss this method in Section 4.3.

Revise the annotation function. The annotations involved in the inconsistency
can be changed so that the conflicting information in the AM does not
become induced under any possible world. This can be viewed as a gener-
alization of AM revision. We discuss this method in Section 4.4.

4.2 EM-based Belief Revision

We now study belief revision through updating the environmental model only
(ΠEM). Suppose that ΠEM is consistent, but that the overall program is Type
II inconsistent. Then, there must exist a set of worlds in the EM such that
there exists a probability distribution that assigns each of them a non-zero
probability. This gives rise to the following result.

Proposition 3 If there exists a probability distribution Pr that satisfies ΠEM

s.t. there exists a world w ∈ WEM where Pr(w) > 0 and
⋃
x∈Θ∪Ω |w|=af(x){x}

is inconsistent (Type II inconsistency), then any change made in order to
resolve this inconsistency by modifying only ΠEM yields a new EM Π ′EM such
that

(∧
a∈w a ∧

∧
a/∈w ¬a

)
: 0± 0 is entailed by Π ′EM.

Proof Suppose by contradiction that Π ′EM 6|=
(∧

a∈w a∧
∧
a/∈w ¬a

)
: 0± 0. By

hypothesis, we have that
⋃
x∈Θ∪Ω | w|=af(x){x} is inconsistent and the changes

made to ΠEM resolve this inconsistency. Therefore, according to Definition 16,
Pr(w) = 0, which is equivalent to the condition Π ′EM |=

(∧
a∈w a∧

∧
a/∈w ¬a

)
:

0± 0. �

Proposition 3 seems to imply an easy strategy to resolve Type II incon-
sistencies: add formulas to ΠEM forcing the necessary worlds to have a zero
probability. However, this may lead to Type I inconsistencies in the resulting
model Π ′EM. If we are applying an EM-only strategy to resolve inconsistencies,
this would then lead to further adjustments to Π ′EM in order to restore Type I
consistency. We illustrate this situation in the following example.

Example 14 Consider two contradictory facts in an AM: a and ¬a such that
af (a) = p and af (¬a) = q. Suppose that p and q are the only atoms in the
EM, and that we have:
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p : 0.4± 0
q : 0.8± 0.1

¬p ∧ ¬q : 0.2± 0.1

which is consistent since the following distribution satisfies all constraints:

Pr({p}) = 0.2;
Pr({p, q}) = 0.2;
Pr({q}) = 0.5;
Pr({}) = 0.1.

Now, to restore Type II consistency of our simple DeLP3E program, we can
add formula p ∧ q : 0 ± 0 to the EM so that world {p, q} is forced to have
probability zero. However, this leads to another inconsistency, this time of
Type I, since putting together all the constraints we have:

Pr({p, q}) = 0;
Pr({p}) + Pr({p, q}) = 0.4;
Pr({q}) + Pr({p, q}) = 0.8± 0.1;
Pr({}) = 0.2± 0.1;
Pr({p}) + Pr({p, q}) + Pr({q}) + Pr({}) = 1;

which is clearly inconsistent. Repairing this inconsistency involves changing
the EM further, for instance by relaxing the bounds in the first two formulas
to accommodate the probability mass that world {p, q} had before and can no
longer hold. �

In the previous example, we saw how changes made to repair Type II incon-
sistencies could lead to Type I inconsistencies. It is also possible that changing
Π ′EM (for instance, by removing elements, relaxing probability bounds of the
sentences, etc.) causes Type II inconsistency in the overall DeLP3E program
— this would lead to the need to set more EM worlds to a probability of
zero. Unfortunately, this process is not guaranteed to arrive at a fully consis-
tent program before being unable to continue; consider the following example,
where the process cannot even begin.

Example 15 Consider an AM composed of several contradictory facts and an
EM with just two atoms, as in the previous example, and the following anno-
tation function:

af (a) = p af (b) = ¬p af (c) = ¬p af (d) = q
af (¬a) = q af (¬b) = ¬q af (¬c) = p af (¬d) = ¬q

Modifying the EM so that no two contradictory literals ever hold at once in a
world that has a non-zero probability leads to the constraints:

Pr({p, q}) = 0;
Pr({p}) = 0;
Pr({q}) = 0;
Pr({}) = 0;
Pr({p}) + Pr({p, q}) + Pr({q}) + Pr({}) = 1;
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As in the previous example, the probability mass cannot be accommodated
within these constraints. It would thus be impossible to restore consistency by
only modifying ΠEM. �

We thus arrive at the following observation from Example 15:

Observation 1 Given a Type II inconsistent DeLP3E program, consistency
cannot always be restored via modifications to ΠEM alone.

Therefore, due to this line of reasoning, in this paper we focus our efforts on
modifications to the other two components of a DeLP3E framework: the AM
and the annotation function, as described in the next two sections. Approaches
combining two or more of these methods are the topic of future work.

4.3 AM-based Belief Revision

The result of the previous section indicates that EM-based belief revision of
a DeLP3E framework (at least by itself) is not a tenable solution. Hence,
in this section, we resort to an alternate approach in which we only mod-
ify the AM (ΠAM). In this section (and the next), given a DeLP3E program
I = (ΠEM, ΠAM, af ), with ΠAM = Ω∪Θ∪∆ ∪ Φ, we are interested in solving
the problem of incorporating an epistemic input (f, af ′) into I, where f is
either an atom or a rule and af ′ is equivalent to af , except for its expansion
to include f . For ease of presentation, we assume that f is to be incorpo-
rated as a fact or strict rule, as incorporating defeasible knowledge can never
lead to inconsistency since any contradicting presumption can be defeated by
another, and hence presumptions can rule out each other. As we are only con-
ducting ΠAM revisions, for I = (ΠEM, ΠAM, af ) and input (f, af ′) we denote
the revision as follows: I • (f, af ′) = (ΠEM, Π

′
AM, af ′) where Π ′AM is the re-

vised argumentation model. We also slightly abuse notation for the sake of
presentation, as well as introduce notation to convert sets of worlds to/from
formulas:

– I ∪ (f, af ′) to denote I ′ = (ΠEM, ΠAM ∪ {f}, af ′).
– (f, af ′) ∈ I = (ΠAM, ΠEM, af ) to denote f ∈ ΠAM and af = af ′.
– W0

EM(I) = {w ∈ WEM | ΠIAM(w) is inconsistent}
– WI

EM(I) = {w ∈ W0
EM | ∃Pr s.t. Pr |= ΠEM ∧ Pr(w) > 0}

Intuitively, the set W0
EM(I) contains all the EM worlds for a given program

where the corresponding knowledge base in the AM is classically inconsistent
and WI

EM(I) is a subset of these that can be assigned a non-zero probability
— the latter are the worlds where inconsistency in the AM can arise.

4.3.1 Postulates for AM-based Belief Revision

We now analyze the rationality postulates for non-prioritized revision of belief
bases first introduced in [20] and generalized in [10], in the context of AM-
based belief revision of DeLP3E programs.
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AM Inclusion: For I • (f, af ′) = (ΠEM, Π
′
AM, af ′), Π ′AM ⊆ ΠAM ∪ {f}.

This postulate states that the revised AM knowledge base is a subset of the
union of the original AM knowledge base and the input.

AM Vacuity: If I ∪ (f, af ′) is consistent, then I • (f, af ′) ⊆ I ∪ (f, af ′).

If simply adding the input does not cause inconsistency, then the revision
operator does precisely that.

AM Consistency Preservation: If I is consistent, then I • (f, af ′) is also
consistent.

The operator maintains a consistent program.

AM Weak Success: If I ∪ (f, af ′) is consistent, then (f, af ′) ∈ I • (f, af ′).

Whenever the simple addition of the input does not cause inconsistencies to
arise, the result will contain the input.

If a portion of the AM knowledge base is removed by the operator, then there
exists a subset of the remaining knowledge base that is not consistent with the
removed element and f .

AM Pertinence: For I •(f, af ′) = (ΠEM, Π
′
AM, af ′), where Π ′AM = Θ′∪Ω′∪

Φ′ ∪∆′, for each g ∈ Θ ∪ Ω \Π ′AM there exists Yg ⊇ Θ′ ∪ Ω′ ∪ {f} s.t. Yg is
consistent and Yg ∪ {g} is inconsistent.

If a portion of the AM knowledge base is removed by the operator, then there
exists a superset of the remaining knowledge base that is not consistent with
the removed element and f .

AM Uniformity 1: Let (f, af ′1), (g, af ′2) be two inputs where WI
EM(I ∪

(f, af ′1)) = WI
EM(I ∪ (g, af ′2)); for all X ⊆ Θ ∪ Ω; if X ∪ {f} is inconsis-

tent iff X ∪ {g} is inconsistent, then Θ′1 ∪ Ω
′
1 \ {f} = Θ′2 ∪ Ω

′
2 \ {g} where

I • (f, af ′1) = (ΠEM, ΠAM
′
1, af ′1) and I • (g, af ′2) = (ΠEM, ΠAM

′
2, af ′2) and

ΠAM
′
i = Θ′i ∪Ω

′
i ∪ Φ

′
i ∪∆

′
i.

If two inputs result in the same set of EM worlds leading to inconsistencies in
an AM knowledge base, and the consistency between analogous subsets (when
joined with the respective input) are the same, then the remaining elements
in the AM knowledge base are the same.

AM Uniformity 2: Let (f, af ′1), (g, af ′2) be two inputs where WI
EM(I ∪

(f, af ′1)) = WI
EM(I ∪ (g, af ′2)); for all X ⊆ Θ ∪ Ω; if X ∪ {f} is inconsis-

tent iff X ∪{g} is inconsistent, then (Θ∪Ω)\ (Θ′1∪Ω
′
1) = (Θ∪Ω)\ (Θ′2∪Ω

′
2)

where I • (f, af ′1) = (ΠEM, ΠAM
′
1, af ′1) and I • (g, af ′2) = (ΠEM, ΠAM

′
2, af ′2)

and ΠAM
′
i = Θ′i ∪Ω

′
i ∪ Φ

′
i ∪∆

′
i.

If two inputs result in the same set of EM worlds leading to inconsistencies in
an AM knowledge base, and the consistency between analogous subsets (when
joined with the respective input) are the same, then the removed elements in
the AM knowledge base are the same.

We can show an equivalence between the Uniformity postulates under cer-
tain conditions.
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Proposition 4 For operator • where for program I•(f, af ′) = (ΠEM, Π
′
AM, af ′)

and Π ′AM ⊆ ΠAM ∪ {f}, we have that • satisfies AM Uniformity 1 iff it also
satisfies AM Uniformity 2.

Proof (If) Suppose BWOC that • satisfies AM Uniformity 1 and does not sat-
isfy AM Uniformity 2. Then (for the two inputs as specified by the Uniformity
postulates) (Θ∪Ω)\(Θ′1∪Ω

′
1) = (Θ∪Ω)\(Θ′2∪Ω

′
2) and Θ′1∪Ω

′
1\{f} 6= Θ′2∪

Ω′2\{g}. However, this is equivalent to (Θ∪Ω)\(Θ′1∪Ω
′
1) = (Θ∪Ω)\(Θ′2∪Ω

′
2)

— hence, we arrive at a contradiction.
(Only-If) Mirrors the above claim. �

4.3.2 AM-Based Revision Operators

In this section, we define a class of operators that satisfies all of the AM
rationality postulates of the previous section. We also show that there are no
operators outside this class that satisfy all of the postulates.

First, we introduce notation CandPgmAM (I), which denotes a set of max-
imal consistent subsets of ΠAM. So, if I is consistent, then CandPgmAM (I) =
{ΠAM}.

CandPgmAM (I) = {Π ′AM | Π ′AM ⊆ Θ ∪Ω s.t. Π ′AM is consistent and

@Π ′′AM ⊆ Θ ∪Ω s.t. Π ′′AM ⊃ Π ′AM s.t. Π ′′AM is consistent}

For our first result, we show that an operator returning any subset of an ele-
ment of CandPgmAM (I) is a necessary and sufficient condition for satisfying
both the Inclusion and Consistency Preservation postulates.

Lemma 1 Given program I and input (f, af ′), operator • satisfies Inclusion
and Consistency Preservation iff for I • (f, af ′) = (ΠEM, Π

′
AM, af ′), there

exists an element X ∈ CandPgmAM (I∪(f, af ′)) s.t. (Θ∪Ω∪{f})∩Π ′AM ⊆ X.

Proof (If) Suppose, BWOC, that there exists X ∈ CandPgmAM (I ∪ (f, af ′))
s.t. (Θ∪Ω∪{f})∩Π ′AM ⊆ X, but either Inclusion or Consistency Preservation
is not satisfied. However, the elements of CandPgmAM (I ∪ (f, af ′)) are all
classically consistent with all subsets of ΠAM ∪ {f}, which is a contradiction.

(Only-If) Suppose, BWOC, that the operator satisfies both Inclusion and Con-
sistency Preservation and there does not exist X ∈ CandPgmAM (I ∪ (f, af ′))
s.t. (Θ ∪ Ω ∪ {f}) ∩ Π ′AM ⊆ X. Then, (Θ ∪ Ω ∪ {f}) ∩ ΠAM is a subset of
ΠAM ∪ {f} and (Θ ∪Ω ∪ {f}) ∩Π ′AM is classically consistent.

However, by definition, this would mean that it must also be a subset of
an element in CandPgmAM (I ∪ (f, af ′)). �

Our next result extends Lemma 1 by showing that elements of ΠAM ∪{f}
that are retained are also elements of CandPgmAM (I ∪ (f, af ′)) if and only
if the operator satisfies Inclusion, Consistency Preservation, and Pertinence
(simultaneously).
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Lemma 2 Given program I and input (f, af ′), operator • satisfies Inclusion,
Consistency Preservation, and Pertinence iff for I•(f, af ′) = (ΠEM, Π

′
AM, af ′),

we have (Θ ∪Ω ∪ {f}) ∩Π ′AM ∈ CandPgmAM (I ∪ (f, af ′)).

Proof (If) Suppose, BWOC, that (Θ ∪ Ω ∪ {f}) ∩Π ′AM ∈ CandPgmAM (I ∪
(f, af ′)), (which, by Lemma 1, satisfies both Consistency and Inclusion) but
does not satisfy Pertinence. As |Θ ∪ Ω \ X| > 0, then f ∈ (Θ ∪ Ω ∪ {f}) ∩
Π ′AM. This means that (Θ ∪Ω ∪ {f}) ∩Π ′AM ⊇ X ∪ {f}, which also yields a
contradiction.

(Only-If) Suppose, BWOC, that the operator satisfies Inclusion, Consistency
Preservation, and Pertinence but (Θ ∪ Ω ∪ {f}) ∩Π ′AM /∈ CandPgmAM (I ∪
(f, af ′)). As the operator satisfies Pertinence, and by Lemma 1, (Θ ∪ Ω ∪
{f}) ∩ Π ′AM ∈ V = {X | ∃Y ∈ CandPgmAM (I ∪ (f, af ′)) ∧ X ⊇ Y }. As
(Θ ∪Ω ∪ {f}) ∩Π ′AM /∈ CandPgmAM (I ∪ (f, af ′)), we have (Θ ∪Ω ∪ {f}) ∩
Π ′AM ∈ Z = {X | ∃Y ∈ CandPgmAM (I ∪ (f, af ′)) ∧X ⊃ Y }. However, this
violates Lemma 1 — we have thus arrived at a contradiction. �

To support the satisfaction of the first Uniformity postulate, we provide the
following lemma that shows for a consistent program where two inputs cause
inconsistencies to arise in the same way, that the set of candidate replacement
programs (minus the added AM formula) is the same.

Lemma 3 Let I = (ΠEM, ΠAM, af ) be a consistent program, (f1, af ′1), (f2, af ′2)
be two inputs, and Ii = (ΠEM, ΠAM∪{fi}, af ′i). IfWI

EM(I1) =WI
EM(I2), then

for all X ⊆ Θ ∪Ω we have that:

1. If X ∪ {f1} is inconsistent ⇔ X ∪ {f2} is inconsistent, then:
{X \{f1} | X ∈ CandPgmAM (I1)} = {X \{f2} | X ∈ CandPgmAM (I2)}.

2. If {X\{f1} | X ∈ CandPgmAM (I1)} = {X\{f2} | X ∈ CandPgmAM (I2)}
then X ∪ {f1} is inconsistent ⇔ X ∪ {f2} is inconsistent.

Proof (If) Suppose BWOC that for all X ⊆ Θ∪Ω we have that X∪{f1} is in-
consistent iffX∪{f2} is inconsistent, but {X\{f1} | X ∈ CandPgmAM (I1)} 6=
{X \ {f2} | X ∈ CandPgmAM (I2)}. However, the pre-condition of this state-
ment implies that {X \ {f1} | X ⊆ CandPgmAM (I1)} = {X \ {f2} | X ⊆
CandPgmAM (I2), which gives us a contradiction.

(Only-If) Suppose BWOC that {X \ {f1} | X ∈ CandPgmAM (I1)} = {X \
{f2} | X ∈ CandPgmAM (I2)}, but there exists a set X ⊆ Θ ∪ Ω s.t. exactly
one of X ∪ {f1}, X ∪ {f2} is inconsistent. As a first case, let us assume that
Θ ∪ Ω ∪ {f1} is consistent. As {X \ {f1} | X ∈ CandPgmAM (I1)} = {X \
{f2} | X ∈ CandPgmAM (I2)}, this implies that Θ ∪ Ω ∪ {f2} must also
be consistent as each of those sets must then have exactly one element. In
this case, a contradiction arises, hence both Θ ∪ Ω ∪ {f1} and Θ ∪ Ω ∪ {f2}
must be classically inconsistent. Now let us consider the other case. As Θ ∪Ω
is consistent and all its subsets are consistent, then we must consider some
X ⊆ Θ ∪ Ω where X ∪ {f1} is not consistent. Hence, X ∪ {f2} must be
consistent. As Θ∪Ω ∈ CandPgmAM (I2), we know that X ∈ {X \ {f2} | X ∈
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CandPgmAM (I2)} iff X∪{f2} is consistent, so it must be in that set. However,
X /∈ {X \ {f1} | X ∈ CandPgmAM (w, I1)} as X ∪ {f1} is not consistent —
this is a contradiction. �

We now define the class of AM-based Operators, denoted AMO. Essen-
tially, this operator selects one of the candidate programs in a deterministic
fashion.

Definition 17 (AM-based Operators) A belief revision operator • is an
“AM-based” operator (• ∈ AMO) iff given program I = (ΠEM, ΠAM, af ) and
input (f, af ′), the revision is defined as I • (f, af ′) = (ΠEM, Π

′
AM, af ′), where

Π ′AM ∈ CandPgmAM (I ∪ (f, af ′)).

Finally, we are able to prove our representation theorem for AM-based
belief revision. This theorem follows directly from the results presented in this
section.

Theorem 1 (AM Representation Theorem) An operator • belongs to
class AMO iff it satisfies Inclusion, Vacuity, Consistency Preservation, Weak
Success, Pertinence, and Uniformity 1.

Proof (Sketch) (If) By the definition of AMO, Vacuity and Weak Success
follow trivially. Further, Lemma 2 shows that Inclusion, Consistency Preser-
vation and Pertinence are satisfied, while Lemma 3 shows that Uniformity 1
is satisfied.

(Only-If) Suppose BWOC that an operator • satisfies all postulates from the
statement and • /∈ AFO. Then, one of the following conditions must hold:
(i) it does not satisfy Lemma 2; (ii) it does not satisfy Lemma 3. However,
by those previous arguments, if it satisfies all postulates from the statement,
these arguments must be true as well — hence a contradiction. �

Example 16 Recall the AM knowledgebase of the Fig. 1. We want to add θ3a =
l and θ3b = ¬l to AM. Also recall KEM defined in Example 2. Let af(θ3a) = a
and af(θ3a) = b. The input is (f, af ′) = ({θ3a, θ3b}, af ′) where af ′ is the new
annotation function. The program I ∪ (f, af ′) = (ΠEM, ΠAM ∪ {f}, af ′) will
be inconsistent because of f8. The AM-based belief revision I • (f, af ′) will
remove either θ3a or θ3b. The resulting program I ′ will be consistent.

We add θ3a = l and θ3b = ¬l to the AM knowledge base of the Fig. 1
and f8 = a ∧ b : 0.4 ± 0.1 to the KEM defined in the Example 2. Also, let
af(θ3a) = a and af(θ3a) = b. In this scenario, the AM-based revision operator
will remove either θ3a or θ3b. The resulting knowledge base will be consistent.

4.4 Annotation Function-based Belief Revision

In this section we attack the belief revision problem from a different angle:
adjusting the annotation function. The advantage to changing the annotation
function is that we might not need to discard an entire fact or strict rule from
the argumentation model. Consider the following example.
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Example 17 Let us consider two contradictory facts in an AM: a and ¬a such
that af (a) = q ∧ r and af (¬a) = r ∧ s. If we assume that q, r, s are the only
atoms in the EM, then we know that a occurs under the environmental worlds
{q, r} and {q, r, s}, and that ¬a occurs under the environmental worlds {r, s}
{q, r, s}.

Clearly, they cannot both be true in world {q, r, s}. Hence, a new anno-
tation formula af ′ where af ′(a) = q ∧ r and af ′(¬a) = r ∧ s ∧ ¬for({q, r, s})
easily solves the conflict (note that for(w) specifies a formula satisfied by ex-
actly world w). Note that we did not have to remove ¬a from the knowledge
base, which means that this information is not completely lost. In other word,
the main difference between the AM-based belief revision and adjusting the
Annotation function is that the later model allows more delicate changes to
be made in order to preserve the information gathered in AM. �

We also note that modifications of the annotation function can be viewed
as a generalization of AM modification. Consider the following:

Example 18 Consider again the present facts a and ¬a in the AM. Assuming
that this causes an inconsistency (that is, there is at least one world in which
they both hold), one way to resolve it would be to remove one of these two
literals. Suppose ¬a is removed; this would be equivalent to setting af(¬a) = ⊥
(where ⊥ represents a contradiction in the language of the EM). �

In this section, we introduce a set of postulates for reasoning about anno-
tation function-based belief revision. As in the previous section, we then go
on to provide a class of operators that satisfy all the postulates and show that
this class includes all operators satisfying the postulates.

As in this section we are only conducting annotation function revisions,
for I = (ΠEM, ΠAM, af ) and input (f, af ′) we denote the revision as follows:
I�(f, af ′) = (ΠEM, Π

′
AM, af ′′) where Π ′AM = ΠAM ∪ {f} and af ′′ is the re-

vised annotation function. Further, in this section, we often refer to “removing
elements of ΠAM” to refer to changes to the annotation function that cause
certain elements of the ΠAM to not have their annotations satisfied in certain
EM worlds. Further, as we are looking to change the annotation function for
a specific subset of facts and strict rules, we specify these subsets with the
following notation.

– wld(f) = {w | w |= f} – the set of worlds that satisfy formula f ; and
– for(w) =

∧
a∈w a ∧

∧
a/∈w ¬a – the formula that has w as its only model.

– ΠIAM(w) = {f ∈ Θ ∪Ω | w |= af(f)}

Intuitively, ΠIAM(w) is the subset of facts and strict rules in ΠAM whose
annotations are true in EM world w.

4.4.1 Postulates for Revising the Annotation Function

Just as we did for AM-based belief revision, here we introduce rationality pos-
tulates for annotation function based belief revision. We note that except for
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vacuity, consistency preservation, and weak success, the postulates are defined
in a different manner from the AM postulates. The key difference between the
AM-based and the AF-based postulates is that AF postulates consider subsets
of the AM that occur in certain the environmental conditions — as opposed
to considering the entire analytical model as a whole. In this way, the AF-
based postulates will give rise to a more fine-grained revision of the overall
knowlegebase than the more coarse-grain AM-based approach.

AF Inclusion: For I�(f, af ′) = (ΠEM, ΠAM ∪ {f}, af ′′),
∀g ∈ ΠAM, wld

(
af ′′(g)

)
⊆ wld(af ′(g)).

This postulate states that, for any element in the AM, the worlds that satisfy
its annotation after the revision are a subset of the original set of worlds
satisfying the annotation for that element.

AF Vacuity: If I ∪ (f, af ′) is consistent, then I�(f, af ′) ⊆ I ∪ (f, af ′).

This is the same as for the AM version of the postulate: no change is made if
the program is consistent with the added input.

AF Consistency Preservation: If I is consistent, then I�(f, af ′) is also
consistent.

Again, as with the AM version, the operator maintains a consistent program.

AF Weak Success: If I ∪ (f, af ′) is consistent, then (f, af ′) ∈ I�(f, af ′).

The input must be contained in the revised program if it does not cause
inconsistencies.

For a given EM world, if a portion of the associated AM knowledge base is
removed by the operator, then there exists a subset of the remaining knowledge
base that is not consistent with the removed element and f .

AF Pertinence: For I�(f, af ′) = (ΠEM, ΠAM ∪ {f}, af ′′), for each w ∈
WI

EM(I ∪ (f, af ′)), we have Xw = {h ∈ Θ ∪ Ω | w |= af ′′(h)}; for each
g ∈ ΠAM(w) \ Xw there exists Yw ⊇ Xw ∪ {f} s.t. Yw is consistent and
Yw ∪ {g} is inconsistent.

For a given EM world, if a portion of the associated AM knowledge base
is removed by the operator, then there exists a superset of the remaining
knowledge base that is not consistent with the removed element and f .

AF Uniformity 1: Let (f, af ′1), (g, af ′2) be two inputs where
WI

EM(I ∪ (f, af ′1)) = WI
EM(I ∪ (g, af ′2)); for all w ∈ WI

EM(I ∪ (f, af ′)) and
for all X ⊆ ΠAM(w); if {x | x ∈ X ∪ {f}, w |= af ′1(x)} is inconsistent iff
{x | x ∈ X ∪{g}, w |= af ′2(x)} is inconsistent, then for each h ∈ ΠAM, we have
that:

{w ∈ WI
EM(I ∪ (f, af ′1)) | w |= af ′1(h) ∧ ¬af ′′1(h)} =

{w ∈ WI
EM(I ∪ (g, af ′2)) | w |= af ′2(h) ∧ ¬af ′′2(h)}.

If two inputs result in the same set of EM worlds leading to inconsistencies in
an AM knowledge base, and the consistency between analogous subsets (when
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joined with the respective input) are the same, then the models removed from
the annotation of a given strict rule or fact are the same for both inputs.

AF Uniformity 2: Let (f, af ′1), (g, af ′2) be two inputs where
WI

EM(I ∪ (f, af ′1)) = WI
EM(I ∪ (g, af ′2)); for all w ∈ WI

EM(I ∪ (f, af ′))and
for all X ⊆ ΠAM(w); if {x | x ∈ X ∪ {f}, w |= af ′1(x)} is inconsistent iff
{x | x ∈ X ∪ {g}, w |= af ′2(x)} is inconsistent, then

{w ∈ WI
EM(I ∪ (f, af ′1)) | w |= af ′1(h) ∧ af ′′1(h)} =

{w ∈ WI
EM(I ∪ (g, af ′2)) | w |= af ′2(h) ∧ af ′′2(h)}.

If two inputs result in the same set of EM worlds leading to inconsistencies in
an AM knowledge base, and the consistency between analogous subsets (when
joined with the respective input) are the same, then the models retained in
the the annotation of a given strict rule or fact are the same for both inputs.

4.4.2 AF-based Revision Operator

In this section, we introduce a class of operators for revising a DeLP3E pro-
gram. Unlike the AM revision, this fine-grained approach requires an adjust-
ment of the conditions in which elements of ΠAM can hold true. Hence, any
subset of ΠAM associated with a world in WI

EM(I ∪ (f, af ′)) must be mod-
ified by the operator in order to remain consistent. So, for such a world w,
we introduce the annotation function version of the set of candidate replace-
ment programs for ΠAM(w) in order to maintain consistency and satisfy the
Inclusion postulate.

CandPgmaf (w, I) =

{Π ′AM | Π ′AM ⊆ ΠAM(w) s.t. Π ′AM is consistent and

@Π ′′AM ⊆ ΠAM(w) s.t. Π ′′AM ⊃ Π ′AM s.t. Π ′′AM

is consistent}

Intuitively, for each world w, this is the set of is a maximal consistent subsets
of ΠIAM(w). However, unlike with AM based belief revision, the candidate
replacement program are specified for specific worlds - this in turn enables
a more “surgical” adjustment to the overall knowledgebase than AM
belief revision. This is due to the fact that in AM revision, components of
the analytical model are deemed to no longer hold in any world as opposed to
a specific subset of worlds.

Before introducing our operator, we define some preliminary notation. Let

Φ :WEM → 2[Θ]∪[Ω]. Recall that sets of all facts and rules are denoted by [Θ]
and [Ω] respectively. For each formula h in ΠAM ∪ {f}, where f is part of the
input, we define:

newFor(h, Φ, I, (f, af ′)) = af ′(h) ∧
∧

w∈WI
EM(I∪(f,af ′)) | h/∈Φ(w)

¬for(w)
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Intuitively, newFor eliminate inconsistency by adding the negation of the
formulas whose only models are the inconsistent words. These inconsistent
words are the result of adding the input f to the existing program I.

Now we define the class of operators called AFO. We show that member-
ship in AFO is a necessary and sufficient condition for satisfying all postulates
introduced in this paper. The supporting Lemmas and their associated proofs
are included in the appendix.

Definition 18 (AF-based Operators) A belief revision operator � is an
“annotation function-based” (or af-based) operator (� ∈ AFO) iff given pro-
gram I = (ΠEM, ΠAM, af ) and input (f, af ′), the revision is defined as I�(f, af ′) =
(ΠEM, ΠAM ∪ {f}, af ′′), where:

∀h, af ′′(h) = newFor(h, Φ, I, (f, af ′))

where ∀w ∈ WEM, Φ(w) ∈ CandPgmaf (w, I ∪ (f, af ′)).

Theorem 2 (Annotation Function Representation Theorem) An op-
erator � belongs to class AFO iff it satisfies Inclusion, Vacuity, Consistency
Preservation, Weak Success, Pertinence, and Uniformity 1.

Proof (Sketch) (If) By the fact that formulas associated with worlds in the
set WI

EM(I ∪ (f, af ′)) are considered in the change of the annotation function,
Vacuity and Weak Success follow trivially. Further, Lemma 8 shows that In-
clusion, Consistency Preservation, and Pertinence are satisfied while Lemma 9
shows that Uniformity 1 is satisfied.

(Only-If) Suppose BWOC that an operator � satisfies all postulates and � /∈
AFO. Then, one of four conditions must hold: (i) it does not satisfy Lemma 8
or (ii) it does not satisfy Lemma 9. However, by those previous arguments,
if it satisfies all postulates, these arguments must be true as well – hence a
contradiction. �

5 Case Study: An Application in Cyber Security

In this section we develop a complete example of how the DeLP3E framework
can be used to deal with a cyber-attribution problem. In this scenario, a cyber
attack has been detected and we want to determine who is responsible for it.

5.1 Model for the attribution problem

To specify the model we need to specify the environmental model, the analyt-
ical model, and the annotation function. First we identify two special subsets
of the set of constants (C) for this application: Cact and Cops, which specify
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the actors that could conduct cyber-operations and the operations themselves,
respectively:

Cact = {baja, krasnovia,mojave}
Cops = {worm123}

That is, the possible actors are the states of baja, krasnovia and mojave, and
the only operation that we consider they can conduct is a worm123 attack.

Next, we need to specify the sets of predicates, PEM, the predicates for
the environmental model, and PAM, the predicates for the analytical model.
These are given in Figure 5, which presents all the predicates with variables.
The following are examples of ground atoms over those predicates; again, we
distinguish between the subset of ground atoms from the environmental model
GEM and the ground atoms from the analytical model GAM:

GEM : origIP(mw123sam1 , krasnovia),mwHint(mw123sam1 , krasnovia),

inLgConf (krasnovia, baja),mseTT (krasnovia, 2)

GAM : evidOf (mojave,worm123 ),motiv(baja, krasnovia), expCw(baja),

tgt(krasnovia,worm123 )

PAM and the set of constants provides all the information we need for the
analytical model. However, there is more to the environmental model than
just PEM and the constants. We need to specify the probabilities of formulae.
This information is given by the following set of probabilistic formulae KEM:

f1 = govCybLab(baja) : 0.8± 0.1

f2 = cybCapAge(baja, 5) : 0.2± 0.1

f3 = mseTT (baja, 2) : 0.8± 0.1

f4 = mwHint(mw123sam1 ,mojave)

∧ compilLang(worm123 , english) : 0.7± 0.2

f5 = malwInOp(mw123sam1 ,worm123 )

∧malwareRel(mw123sam1 ,mw123sam2 )

∧mwHint(mw123sam2 ,mojave) : 0.6± 0.1

f6 = inLgConf (baja, krasnovia) ∨ ¬cooper(baja, krasnovia) : 0.9± 0.1

f7 = origIP(mw123sam1 , baja) : 1± 0

Given this probabilistic information, we can demonstrate the linear program-
ming approach to the maximum entailment problem defined in Definition 2.
Consider knowledge base K′EM and a set of ground atoms restricted to those
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PEM: origIP(M,X) Malware M originated from an IP address belonging
to actor X.

malwInOp(M,O) Malware M was used in cyber-operation O.
mwHint(M,X) Malware M contained a hint that it was created by

actor X.
compilLang(M,C) Malware M was compiled in a system that used

language C.
nativLang(X,C) Language C is the native language of actor X.
inLgConf (X,X′) Actors X,X′ are in a larger conflict with each other.
mseTT (X,N) The number of top-tier math-science-engineering

universities in country X is at least N .
infGovSys(X,M) Systems belonging to actor X were infected with

malware M .
cybCapAge(X,N) Actor X has had a cyber-warfare capability for N

years or less.
govCybLab(X) Actor X has a government cyber-security lab.

PAM: condOp(X,O) Actor X conducted cyber-operation O.
evidOf (X,O) There is evidence that actor X conducted

cyber-operation O.
motiv(X,X′) Actor X had a motive to launch a cyber-attack

against actor X′.
isCap(X,O) Actor X is capable of conducting cyber-operation O.
tgt(X,O) Actor X was the target of cyber-operation O.
hasMseInvest(X) Actor X has a significant investment in

math-science-engineering education.
expCw(X) Actor X has experience in conducting cyber-

operations.

Fig. 5 Predicate definitions for the environment and analytical models in the cyber attri-
bution example.

that appear in that program. Hence, we have the following worlds:

w1 = {govCybLab(baja), cybCapAge(baja, 5),mseTT (baja, 2)}
w2 = {govCybLab(baja), cybCapAge(baja, 5)}
w3 = {govCybLab(baja),mseTT (baja, 2)}
w4 = {cybCapAge(baja, 5),mseTT (baja, 2)}
w5 = {cybCapAge(baja, 5)}
w6 = {govCybLab(baja)}
w7 = {mseTT (baja, 2)}
w8 = ∅

and suppose we wish to compute the probability for formula:

q = govCybLab(baja) ∨mseTT (baja, 2)

For each formula in KEM we have a constraint, and for each world above we
have a variable. An objective function is created based on the worlds that
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satisfy the query formula (in this case, worlds w1, w2, w3, w4, w6, w7). Hence,
EP-LP-MIN(K′EM, q) can be written as follows:

max x1 + x2 + x3 + x4 + x6 + x7 w .r .t . :

0.7 ≤ x1 + x2 + x3 + x6 ≤ 0.9

0.1 ≤ x1 + x2 + x4 + x5 ≤ 0.3

0.8 ≤ x1 + x3 + x4 + x7 ≤ 1

x1 + x2 + x3 + x4 + x5 + x6 + x7 + x8 = 1

From this, we can solve EP-LP-MAX(K′EM, q) and, after an easy modification,
EP-LP-MIN(K′EM, q), and obtain the solution 0.9± 0.1.

Θ : θ1a = evidOf (baja,worm123 )
θ1b = evidOf (mojave,worm123 )
θ2 = motiv(baja, krasnovia)

Ω : ω1a = ¬condOp(baja,worm123 )← condOp(mojave,worm123 )
ω1b = ¬condOp(mojave,worm123 )← condOp(baja,worm123 )
ω2a = condOp(baja,worm123 )←

evidOf (baja,worm123 ),
isCap(baja,worm123 ),
motiv(baja, krasnovia),
tgt(krasnovia,worm123 )

ω2b = condOp(mojave,worm123 )←
evidOf (mojave,worm123 ),
isCap(mojave,worm123 ),
motiv(mojave, krasnovia),
tgt(krasnovia,worm123 )

Φ : φ1 = hasMseInvest(baja) –≺

φ2 = tgt(krasnovia,worm123 ) –≺

φ3 = ¬expCw(baja) –≺

∆ : δ1a = condOp(baja,worm123 ) –≺ evidOf (baja,worm123 )
δ1b = condOp(mojave,worm123 ) –≺ evidOf (mojave,worm123 )
δ2 = condOp(baja,worm123 ) –≺ isCap(baja,worm123 )
δ3 = condOp(baja,worm123 ) –≺

motiv(baja, krasnovia),
tgt(krasnovia,worm123 )

δ4 = isCap(baja,worm123 ) –≺ hasMseInvest(baja)
δ5a = ¬isCap(baja,worm123 ) –≺ ¬expCw(baja)
δ5b = ¬isCap(mojave,worm123 ) –≺ ¬expCw(mojave)

Fig. 6 A ground argumentation framework.

Now, given PAM and C, we can assemble the ground argumentation frame-
work of Figure 6 as a sample ΠAM. From this argumentation framework, we
can build the following arguments:
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Θ : θ1 = evidOf (baja,worm123 )
θ2 = motiv(baja, krasnovia)

Ω : ω1 = ¬condOp(X,O)← condOp(X′, O), X 6= X′

ω2 = condOp(X,O)← evidOf (X,O), isCap(X,O),
motiv(X,X′), tgt(X′, O), X 6= X′

Φ : φ1 = hasMseInvest(baja) –≺

φ2 = tgt(krasnovia,worm123 ) –≺

φ3 = ¬expCw(baja) –≺

∆ : δ1 = condOp(X,O) –≺ evidOf (X,O)
δ2 = condOp(X,O) –≺ isCap(X,O)
δ3 = condOp(X,O) –≺ motiv(X,X′), tgt(X′, O)
δ4 = isCap(X,O) –≺ hasMseInvest(X)
δ5 = ¬isCap(X,O) –≺ ¬expCw(X)

Fig. 7 A non-ground argumentation framework.

〈A1, condOp(baja,worm123 )〉 A1 = {θ1a, δ1a}
〈A2, condOp(baja,worm123 )〉 A2 = {φ1, φ2, δ4, ω2a, θ1a, θ2}
〈A3, condOp(baja,worm123 )〉 A3 = {φ1, δ2, δ4}
〈A4, condOp(baja,worm123 )〉 A4 = {φ2, δ3, θ2}
〈A5, isCap(baja,worm123 )〉 A5 = {φ1, δ4}
〈A6,¬condOp(baja,worm123 )〉 A6 = {δ1b, θ1b, ω1a}
〈A7,¬isCap(baja,worm123 )〉 A7 = {φ3, δ5a}

Note that:
〈A5, isCap(baja,worm123 )〉

is a sub-argument of both

〈A2, condOp(baja,worm123 )〉

and
〈A3, condOp(baja,worm123 )〉

The following are some of the attack relationships between these arguments:
A1, A2, A3, and A4 all attack A6; A5 attacks A7; and A7 attacks A2.

In Figure 7 we show an another example of a knowledge base for the attri-
bution problem, this time with a non-ground argumentation system.

With the environmental and analytical models specified, the remaining
component of the model is the annotation function; one suitable annotation
function is given in Figure 8. Consider worlds w1, . . . , w8 along with the ar-
gument 〈A5, isCap(baja,worm123 )〉. This argument is valid in worlds w1, w2,
w3, w4, w6, and w7. Similarly, worlds w3, w6, and w7 are warranting scenarios
for argument 〈A5, isCap(baja,worm123 )〉 and

nec(isCap(baja,worm123 )) = {w3, w6, w7}

while
poss(isCap(baja,worm123 )) = {w1, w2, w3, w4, w6, w7}
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af (θ1) = origIP(worm123 , baja) ∨
(
malwInOp(worm123 , o)∧(

mwHint(worm123 , baja) ∨ (compilLang(worm123 , c) ∧ nativLang(baja, c))
))

af (θ2) = inLgConf (baja, krasnovia)
af (ω1) = True
af (ω2) = True
af (φ1) = mseTT (baja, 2) ∨ govCybLab(baja)
af (φ2) = malwInOp(worm123 , o′) ∧ infGovSys(krasnovia,worm123 )
af (φ3) = cybCapAge(baja, 5)
af (δ1) = True
af (δ2) = True
af (δ3) = True
af (δ4) = True
af (δ5) = True

Fig. 8 Example annotation function.

5.2 Applying Entailment to the Cyber-Attribution Problem

We now discuss how finding tight bounds on the entailment probability can
be applied to the cyber-attribution problem. Following the domain-specific
notation introduced in the beginning of this case study (where the set of
constants C includes two subsets: Cact and Cops, that specify the actors that
could conduct cyber-operations and the operations themselves, respectively),
we define a special case of the entailment problem as follows.

Definition 19 Let I = (ΠEM, ΠAM, af ) be a DeLP3E program, S ⊆ Cact (the
set of “suspects”), O ∈ Cops (the “operation”), E ⊆ GEM (the “evidence”),
and D ⊆ GEM (the “probabilistic fact”).

An actor A ∈ S is said to be a most probable suspect iff there does not exist
A′ ∈ S such that PcondOp(A′,O),I′ > PcondOp(A,O),I′ where I ′ = (ΠEM ∪ΠE ∪
ΠD, ΠAM, af ′) with ΠE =

⋃
c∈E{c : 1± 0} and ΠD =

⋃
c∈D{c : p± ε}.

Note that PcondOp(A′,O),I′ and PcondOp(A,O),I′ are midpoint of intervals
PcondOp(A′,O),I′ ± ε and PcondOp(A,O),I′ ± ε. Alternative formulations are pos-
sible based on upper or lower bound of interval.

Given the above definition, we refer to Q = (I,S,O, E) as an attribution
query, and A as an answer to Q. We note that in the above definition, the items
of evidence are added to the environmental model with a probability of 1.
While, in general, this may be the case, there are often instances in analysis
of a cyber-operation where the evidence may be true with some degree of
uncertainty. For this reason we allow for probabilistic facts in the definition.

To understand how uncertain evidence can be present in a cyber-security
scenario, consider the following scenario:

In Symantec’s initial analysis of the Stuxnet worm, analysts found the
routine designed to attack the S7-417 logic controller was incomplete,
and hence would not function [13]. However, industrial control system
expert Ralph Langner claimed that the incomplete code would run
provided a missing data block is generated, which he thought was pos-
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Algorithm SFWD ATTRIB(I,S,O, E)

1. Let I′ = (ΠEM, ΠAM ∪ E, af ′), where af ′(c) = > if c ∈ E
and af ′(c) = af (c) otherwise.

2. For each A ∈ S and w ∈ WEM do
3. Pos:= F∗w(condOp(A,O)) w.r.t. I′;
4. Neg:= F∗w(¬condOp(A,O)) w.r.t. I′;
5. For each A ∈ S do
6. m:= nec(condOp(A,O)) w.r.t. ΠEM and af ′ (computed using Pos);
7. c:= poss(condOp(A,O)) w.r.t. ΠEM and af ′ (computed using Neg);
8. PA:= PcondOp(A,O),I′ ;
9. Return arg maxA(PA).

Fig. 9 A straightforward algorithm for finding a solution to an attribution query.

sible [27]. In this case, though the code was incomplete, uncertainty was
clearly present regarding its usability.5

This situation provides a real-world example of the need to compare arguments
— in this case, in the worlds where both arguments are valid, Langner’s argu-
ment would likely defeat Symantec’s by generalized specificity (the outcome,
of course, will depend on the exact formalization of the two).

In Figure 9 we give a simple, straightforward algorithm for attribution
queries. The correctness of this algorithm clearly follows from the definitions
above. We note that a key source of computational complexity lies in step 2,
where all arguments supporting the hypothesis that each actor conducted the
operation are computed for each world in the EM; this leads to a factor of 2|GEM|

(exponential in the number of ground atoms in the environmental model).
However, we also note that this is equal to the time complexity required to
write out a linear program for answering the entailment query.

Note that the exact approaches presented thus far for answering attribution
queries experience exponential running times in the worst case. Hence, for
the creation of a real-world system, we consider several practical approaches
that can be taken to answer attribution queries Q = (I,S,O, E). We are
currently exploring several of these ideas as we work to build a system for
cyber-attribution based on DeLP3E:

1. Approximating the warranting formula: Instead of inspecting all possible
classical dialectical trees as in Approach 1, either a subset of trees can be
computed according to a given heuristic or an anytime approach can be
adopted to select such a subset F ′. The computations with respect to F ′

will then yield sound approximations relative to the full forest F , which
means that all probability intervals will be supersets of the exact intervals.

2. Approximating the probability: Another alternative to Approach 1 is to
apply approximation algorithms to the formula; for instance:

(a) Approximate satisfiability: if the formula is unsatisfiable, then the war-
ranting probability is zero;

5 Langner was later vindicated by the discovery of an older sample, Stuxnet 0.5, which
generated the data block [5].
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(b) A lower bound on the warranting probability can be obtained from a
subset of possible worlds (k most probable worlds, random sample of
worlds, etc.).

3. “What-if” Reasoning: Given a set Wint of worlds of interest and a war-
ranting formula φ (computed using any of the above approaches), each
world can be checked to see which literals condOp(Ai,O), with Ai ∈ S, are
warranted. That is, instead of computing probability of attribution, the
attribution literal is analyzed in each world of interest.

6 Conclusions

In this paper we introduced the DeLP3E framework, consisting of an environ-
mental model, an analytical model, and an annotation function that relates
the two. DeLP3E is an extension of the PreDeLP language in which sentences
can be be annotated with probabilistic events. Such events are connected to
a probabilistic model, allowing a clear separation of interests between certain
and uncertain knowledge while allowing uncertainty to be captured and incor-
porated into reasoning. After presenting the language, we focused on charac-
terizing belief revision operations over DeLP3E knowledge bases. We presented
two sets of postulates, both inspired by the postulates that were developed for
non-prioritized revision of classical belief bases. The first set of postulates
provides a coarse approach that assumes that revision operations only allow
changes to the analytical model, while the second is a finer-grained approach
based on modifications to the annotation function. We then proceeded to study
constructions of operators based on these postulates, and prove that they are
equivalent to their characterizations by the respective postulates.

This paper makes a number of contributions to the literature of both ar-
gumentation and belief revision. First, this paper contains the most complete
description of DeLP3E yet published6. This is a contribution to the study of
probabilistic argumentation, and one that, with the separation between the
argumentation system and the probabilistic information in the environmental
model, makes it unique. Second, this paper presents two approaches to belief
revision in DeLP3E. This is a contribution to the study of the relationship be-
tween argumentation systems and belief revision, one that views the problem
from the position of structured argumentation. While the study of revision of
the annotation function is specific to DeLP3E, the study of the revision of the
analytical model will be relevant to all argumentation systems that combine
strict and defeasible elements, such as DeLP [15], PreDeLP [30] and ASPIC+
[31,33]. Finally, the paper presents an extended case study of the application
of DeLP3E to the attribution problem. This is a contribution to both the ar-
gumentation literature, in showing how argumentation can be applied to a
complex real-world problem, and to the cyber security literature, suggesting
tools that can be used to address this problem. As part of the case study we

6 DeLP3E was briefly introduced in [41] and [40] as a solution to the attribution problem.
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considered a special kind of query, called an attribution query, that is useful
in tackling the problem of attributing responsibility to entities given a cyber
event of interest. This is a further contribution to the cyber security literature.

After this initial proposal, there remains much work to be done with
DeLP3E. As future work, we plan to study other kinds of belief revision op-
erators, including more general ones that allow the modification of the en-
vironmental model along with the other two components, as well as revision
operators that function at different levels of granularity. Furthermore, we are
in the final stages of producing an implementation of the system — important
future work involves focusing on scalable inference algorithms and testing them
on real-world data from the cyber security domain. The last thing to note is
that, as discussed above, DeLP3E is less a specific formal system, and more a
family of systems in which the analytical model and the environmental model
are instantiated in different ways. Here we chose to use Nilsson’s probabilistic
logic to capture the world in the environmental model, but it is possible to
use other frameworks for this purpose; for instance, Markov Logic networks
[35] would be an interesting choice. Similarly, here we chose to use PreDeLP
to build the analytical model. We can easily envisage versions of DeLP3E that
use frameworks other than PreDeLP for the analytical model. For instance,
an abstract argumentation model [3], an argumentation model that includes
uncertain consideration in defeat relationships (such as a probabilistic argu-
mentation model [28] or possibilistic argumentation model [4]) and we might
also associate varying notions of strength with attack relations as in [8]. All of
these are potential routes for future work.
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Appendix

In this appendix we provide some complementary material that was not in-
cluded in the main body of the paper to enhance readability. Specifically, the
results of this appendix support the proof of Theorem 2 in Section 4.4 (the
representation theorem for AF-based belief revision).

First, we give the annotation function revision versions of Proposition 4.

Proposition 5 For operator � such that I�(f, af ′) = (ΠEM, ΠAM∪{f}, af ′′)

and ∀w, we have that Π
I�(f,af ′)
AM (w) ⊆ Π

I∪(f,af ′)
AM (w), it holds that � satisfies

AF Uniformity 1 iff it also satisfies AF Uniformity 2.

Proof (If) Suppose BWOC that � satisfies AF Uniformity 1 and does not
satisfy AF Uniformity 2. Then ∀w ∈ WI

EM(I ∪ (f, af ′1)) = WI
EM(I ∪ (g, af ′2))
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and h ∈ ΠAM we have:

{w ∈ WI
EM(I ∪ (f, af ′1)) | w |= af ′1(h)} ∩ {w ∈ WI

EM(I ∪ (f, af ′1)) | w |= ¬af ′′1 (h)} =

{w ∈ WI
EM(I ∪ (g, af ′2)) | w |= af ′2(h)} ∩ {w ∈ WI

EM(I ∪ (g, af ′2)) | w |= ¬af ′′2 (h)}

and

{w ∈ WI
EM(I ∪ (f, af ′1)) | w |= af ′1(h)} ∩ {w ∈ WI

EM(I ∪ (f, af ′1)) | w |= af ′′1 (h)} 6=
{w ∈ WI

EM(I ∪ (g, af ′2)) | w |= af ′2(h)} ∩ {w ∈ WI
EM(I ∪ (g, af ′2)) | w |= af ′′2 (h)}

However, we note that ∀h ∈ ΠAM we have af ′1(h) = af ′2(h) and by the
statement of the postulate WI

EM(I ∪ (f, af ′1)) = WI
EM(I ∪ (g, af ′2)), we have

the following:

{w ∈ WI
EM(I ∪ (f, af ′1)) | w |= ¬af ′′1(h)} =

{w ∈ WI
EM(I ∪ (g, af ′2)) | w |= ¬af ′′2(h)}

Which implies a contradiction.
(Only-If) Mirrors the above claim. �

We now focus on complementary material relating to Section 4.4 on anno-
tation function-based belief revision.

Lemma 4 Given program I and input (f, af ′), operator � satisfies Inclusion
and Consistency Preservation iff for I�(f, af ′) = (ΠEM, ΠAM, af ′′), for all
w ∈ WI

EM(I ∪ (f, af ′)), there exists an element X ∈ CandPgmaf (w, I ∪
(f, af ′)) s.t. {h ∈ Θ ∪Ω ∪ {f} | w |= af ′′(h)} ⊆ X.

Proof (If) Suppose, BWOC, that there exists an elementX ∈ CandPgmaf (w, I∪
(f, af ′)) s.t. {h ∈ Θ∪Ω∪{f}|w |= af ′′(h)} ⊆ X but either Inclusion or Consis-
tency Preservation is not satisfied. However, the elements of CandPgmaf (w, I∪
(f, af ′)) are all classically consistent and all subsets of ΠAMI∪(f,af ′)(w), which
is a contradiction.

(Only-If) Suppose, BWOC, that the operator satisfies both Inclusion and Con-
sistency Preservation and there does not exist X ∈ CandPgmaf (w, I∪(f, af ′))
s.t. {h ∈ Θ∪Ω∪{f} | w |= af ′′(h)} ⊆ X. Then, {h ∈ Θ∪Ω∪{f} | w |= af ′′(h)}
is a subset of ΠAMI∪(f,af ′)(w) and {h ∈ Θ ∪Ω ∪ {f} | w |= af ′′(h)} is classi-
cally consistent. However, by definition, this would mean that it must also be
a subset of an element in CandPgmaf (w, I ∪ (f, af ′)). �

We now investigate the role that the set CandPgmaf plays in showing the
necessary and sufficient requirement for satisfying Pertinence.

Lemma 5 Given program I and input (f, af ′), operator � satisfies Inclusion,
Consistency Preservation, and Pertinence iff for I�(f, af ′) = (ΠEM, ΠAM, af ′′),
for all w ∈ WI

EM(I ∪ (f, af ′)) we have {h ∈ Θ ∪ Ω ∪ {f} | w |= af ′′(h)} ∈
CandPgmaf (w, I ∪ (f, af ′)).
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Proof (If) Suppose, BWOC, that

{h ∈ Θ ∪Ω ∪ {f} | w |= af ′′(h)} ∈ CandPgmaf (w, I ∪ (f, af ′))

(which, by Lemma 7, satisfies both Consistency and Inclusion) but does not
satisfy Pertinence. As |ΠAM(w) \Xw| > 0, then f ∈ {h ∈ Θ ∪Ω ∪ {f} | w |=
af ′′(h)}. This means that {h ∈ Θ∪Ω ∪{f} | w |= af ′′(h)} ⊇ Xw ∪{f}, which
also yields a contradiction.

(Only-If) Suppose, BWOC, that the operator satisfies Inclusion, Consistency
Preservation, and Pertinence but there exists w s.t. {h ∈ Θ ∪ Ω ∪ {f} | w |=
af ′′(h)} /∈ CandPgmaf (w, I ∪ (f, af ′)). By Lemma 7, {h ∈ Θ ∪Ω ∪{f} | w |=
af ′′(h)} ∈ V = {X | ∃Y ∈ CandPgmaf (w, I ∪ (f, af ′)) ∧ X ⊇ Y }. Hence,
this would mean that {h ∈ Θ ∪ Ω ∪ {f} | w |= af ′′(h)} ∈ Z = {X | ∃Y ∈
CandPgmaf (w, I∪(f, af ′))∧X ⊃ Y } in this case. However, this would violate
Lemma 7 — a contradiction. �

Lemma 6 Let I = (ΠEM, ΠAM, af ) be a consistent program, (f1, af ′1), (f2, af ′2)
be two inputs, and Ii = (ΠEM, ΠAM∪{fi}, af ′i). IfWI

EM(I1) =WI
EM(I2), then

for all w ∈ WI
EM(I1) and all X ⊆ ΠAM(w) we have that:

1. If {x | x ∈ X∪{f1}, w |= af ′1(x)} is inconsistent ⇔ {x | x ∈ X∪{f2}, w |=
af ′2(x)} is inconsistent, then {X \ {f1} | X ∈ CandPgmaf (w, I1)} =
{X \ {f2} | X ∈ CandPgmaf (w, I2)}.

2. If {X \ {f1} | X ∈ CandPgmaf (w, I1)} =
{X \ {f2} | X ∈ CandPgmaf (w, I2)} then {x | x ∈ X ∪ {f1}, w |= af ′1(x)}
is inconsistent ⇔ {x | x ∈ X ∪ {f2}, w |= af ′2(x)} is inconsistent.

Proof (If) Suppose BWOC that for all w ∈ WI
EM(I1) and all X ⊆ ΠAM(w);

if {x | x ∈ X ∪ {f1}, w |= af ′1(x)} is inconsistent iff {x | x ∈ X ∪ {f2}, w |=
af ′2(x)} is inconsistent, but there exists w s.t.:

{X \{f1} | X ∈ CandPgmaf (w, I1)} 6= {X \{f2} | X ∈ CandPgmaf (w, I2)}.

However, the pre-condition of this statement implies that {X \ {f1} | X ⊆
CandPgmaf (w, I1)} = {X \ {f2} | X ⊆ CandPgmaf (w, I2) which gives us a
contradiction.

(Only-If) Suppose BWOC that for all w, {X\{f1} | X ∈ CandPgmaf (w, I1)} =
{X \ {f2} | X ∈ CandPgmaf (w, I2)}, but there exists a world w ∈ WI

EM(I1)
and setX ⊆ ΠAM(w) s.t. exactly one of {x | x ∈ X∪{f1}, w |= af ′1(x)}, {x | x ∈
X ∪ {f2}, w |= af ′2(x)} is inconsistent. As a first case, let us assume that
ΠAM(w) ∪ {f1} is consistent. As {X \ {f1} | X ∈ CandPgmaf (w, I1)} =
{X \ {f2} | X ∈ CandPgmaf (w, I2)}, this implies that ΠAM(w) ∪ {f2} must
also be consistent as each of those sets must then have exactly one element.
In this case a contradiction arises, hence both ΠAM(w)∪{f1}, ΠAM(w)∪{f2}
must be classically inconsistent. Now let us consider the other case. AsΠAM(w)
is consistent and all its subsets are consistent, then we must consider some
X ⊆ ΠAM(w) where X ∪{f1} is not consistent. Hence, X ∪{f2} must be con-
sistent. As ΠAM(w) ∈ CandPgmaf (w, I2), we know that X ∈ {X \{f2} | X ∈



www.manaraa.com

Belief Revision in Structured Probabilistic Argumentation 45

CandPgmaf (w, I2)} iff X ∪{f2} is consistent, so it must be in that set. How-
ever, X /∈ {X \ {f1} | X ∈ CandPgmaf (w, I1)} as X ∪ {f1} is not consistent
— this is a contradiction. �

Lemma 7 Given program I and input (f, af ′), operator � satisfies Inclusion
and Consistency Preservation iff for I�(f, af ′) = (ΠEM, ΠAM, af ′′), for all
w ∈ WI

EM(I ∪ (f, af ′)), there exists an element X ∈ CandPgmaf (w, I ∪
(f, af ′)) s.t. {h ∈ Θ ∪Ω ∪ {f} | w |= af ′′(h)} ⊆ X.

Proof (If) Suppose, BWOC, that there exists X ∈ CandPgmaf (w, I∪(f, af ′))
s.t. {h ∈ Θ ∪ Ω ∪ {f}|w |= af ′′(h)} ⊆ X but either Inclusion or Consistency
Preservation is not satisfied. However, the elements of CandPgmaf (w, I ∪
(f, af ′)) are all classically consistent and all subsets of ΠAMI∪(f,af ′)(w), which
is a contradiction.

(Only-If) Suppose, BWOC, that the operator satisfies both Inclusion and Con-
sistency Preservation and there does not exist X ∈ CandPgmaf (w, I∪(f, af ′))
s.t. {h ∈ Θ∪Ω∪{f} | w |= af ′′(h)} ⊆ X. Then, {h ∈ Θ∪Ω∪{f} | w |= af ′′(h)}
is a subset of ΠAMI∪(f,af ′)(w) and {h ∈ Θ ∪Ω ∪ {f} | w |= af ′′(h)} is classi-
cally consistent. However, by definition, this would mean that it must also be
a subset of an element in CandPgmaf (w, I ∪ (f, af ′)). �

We now investigate the role that the set CandPgmaf plays in showing the
necessary and sufficient requirement for satisfying Pertinence.

Lemma 8 Given program I and input (f, af ′), operator � satisfies Inclusion,
Consistency Preservation, and Pertinence iff for I�(f, af ′) = (ΠEM, ΠAM, af ′′),
for all w ∈ WI

EM(I ∪ (f, af ′)) we have {h ∈ Θ ∪ Ω ∪ {f} | w |= af ′′(h)} ∈
CandPgmaf (w, I ∪ (f, af ′)).

Proof (If) Suppose, BWOC, that

{h ∈ Θ ∪Ω ∪ {f} | w |= af ′′(h)} ∈ CandPgmaf (w, I ∪ (f, af ′))

(which, by Lemma 7, satisfies both Consistency and Inclusion) but does not
satisfy Pertinence. As |ΠAM(w) \Xw| > 0, then f ∈ {h ∈ Θ ∪Ω ∪ {f} | w |=
af ′′(h)}. This means that {h ∈ Θ∪Ω ∪{f} | w |= af ′′(h)} ⊇ Xw ∪{f}, which
also yields a contradiction.

(Only-If) Suppose, BWOC, that the operator satisfies Inclusion, Consistency
Preservation, and Pertinence but there exists w s.t. {h ∈ Θ ∪ Ω ∪ {f} | w |=
af ′′(h)} /∈ CandPgmaf (w, I ∪ (f, af ′)). By Lemma 7, {h ∈ Θ ∪Ω ∪{f} | w |=
af ′′(h)} ∈ V = {X | ∃Y ∈ CandPgmaf (w, I ∪ (f, af ′)) ∧ X ⊇ Y }. Hence,
this would mean that {h ∈ Θ ∪ Ω ∪ {f} | w |= af ′′(h)} ∈ Z = {X | ∃Y ∈
CandPgmaf (w, I∪(f, af ′))∧X ⊃ Y } in this case. However, this would violate
Lemma 7 — a contradiction. �

Lemma 9 Let I = (ΠEM, ΠAM, af ) be a consistent program, (f1, af ′1), (f2, af ′2)
be two inputs, and Ii = (ΠEM, ΠAM∪{fi}, af ′i). IfWI

EM(I1) =WI
EM(I2), then

for all w ∈ WI
EM(I1) and all X ⊆ ΠAM(w) we have that:
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1. If {x | x ∈ X∪{f1}, w |= af ′1(x)} is inconsistent ⇔ {x | x ∈ X∪{f2}, w |=
af ′2(x)} is inconsistent, then {X \ {f1} | X ∈ CandPgmaf (w, I1)} =
{X \ {f2} | X ∈ CandPgmaf (w, I2)}.

2. If {X \ {f1} | X ∈ CandPgmaf (w, I1)} =
{X \ {f2} | X ∈ CandPgmaf (w, I2)} then {x | x ∈ X ∪ {f1}, w |= af ′1(x)}
is inconsistent ⇔ {x | x ∈ X ∪ {f2}, w |= af ′2(x)} is inconsistent.

Proof (If) Suppose BWOC that for all w ∈ WI
EM(I1) and all X ⊆ ΠAM(w);

if {x | x ∈ X ∪ {f1}, w |= af ′1(x)} is inconsistent iff {x | x ∈ X ∪ {f2}, w |=
af ′2(x)} is inconsistent, but there exists w s.t.
{X \{f1} | X ∈ CandPgmaf (w, I1)} 6= {X \{f2} | X ∈ CandPgmaf (w, I2)}.
However, the pre-condition of this statement implies that {X \ {f1} | X ⊆
CandPgmaf (w, I1)} = {X \ {f2} | X ⊆ CandPgmaf (w, I2) which gives us a
contradiction.

(Only-If) Suppose BWOC that for all w, {X\{f1} | X ∈ CandPgmaf (w, I1)} =
{X \ {f2} | X ∈ CandPgmaf (w, I2)}, but there exists a world w ∈ WI

EM(I1)
and setX ⊆ ΠAM(w) s.t. exactly one of {x | x ∈ X∪{f1}, w |= af ′1(x)}, {x | x ∈
X ∪ {f2}, w |= af ′2(x)} is inconsistent. As a first case, let us assume that
ΠAM(w) ∪ {f1} is consistent. As {X \ {f1} | X ∈ CandPgmaf (w, I1)} =
{X \ {f2} | X ∈ CandPgmaf (w, I2)}, this implies that ΠAM(w) ∪ {f2} must
also be consistent as each of those sets must then have exactly one element.
In this case a contradiction arises, hence both ΠAM(w)∪{f1}, ΠAM(w)∪{f2}
must be classically inconsistent. Now let us consider the other case. AsΠAM(w)
is consistent and all its subsets are consistent, then we must consider some
X ⊆ ΠAM(w) where X ∪{f1} is not consistent. Hence, X ∪{f2} must be con-
sistent. As ΠAM(w) ∈ CandPgmaf (w, I2), we know that X ∈ {X \{f2} | X ∈
CandPgmaf (w, I2)} iff X ∪{f2} is consistent, so it must be in that set. How-
ever, X /∈ {X \ {f1} | X ∈ CandPgmaf (w, I1)} as X ∪ {f1} is not consistent
— this is a contradiction. �
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